Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private define
#define VDDA_APPLI
#define VAR_CONVERTED_DATA_INIT_VALUE
#define DIGITAL_SCALE_12BITS
Private variables
AdcHandle
DacHandle
uhADCxConvertedData
uhADCxConvertedData_Voltage_mVolt
ubAdcGrpRegularUnitaryConvStatus
ubUserButtonClickEvent
Private function prototypes
main()
Configure_ADC()
Generate_waveform_SW_update_Config()
Generate_waveform_SW_update()
SystemClock_Config()
HAL_GPIO_EXTI_Callback(uint16_t)
AdcGrpRegularUnitaryConvComplete_Callback()
AdcGrpRegularOverrunError_Callback()
HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *)
Error_Handler()
Files
loading...
SourceVuSTM32 Libraries and SamplesADC_SingleConversion_TriggerSW_ITSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file Examples_MIX/ADC/ADC_SingleConversion_TriggerSW_IT/Src/main.c * @author MCD Application Team * @brief This example describes how to use a ADC peripheral to perform * a single ADC conversion of a channel, at each software start. * Example using programming model: interrupt * (for programming models polling or DMA transfer, refer to * other examples). * This example is based on the STM32F4xx ADC HAL & LL API * (LL API is used for performance improvement). ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_MIX_HAL_Examples * @{ *//* ... */ /** @addtogroup ADC_SingleConversion_TriggerSW_IT * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI ((uint32_t)3300) /* Definitions of data related to this example */ /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* Full-scale digital value with a resolution of 12 bits (voltage range */ /* determined by analog voltage references Vref+ and Vref-, */ /* refer to reference manual). */ #define DIGITAL_SCALE_12BITS (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B)) Private define /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Peripherals handlers declaration */ /* ADC handler declaration */ ADC_HandleTypeDef AdcHandle; #if defined(WAVEFORM_GENERATION) /* DAC handler declaration */ DAC_HandleTypeDef DacHandle; /* DAC used for waveform voltage generation for test *//* ... */ #endif /* WAVEFORM_GENERATION */ /* Variables for ADC conversion data */ __IO uint16_t uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ __IO uint16_t uhADCxConvertedData_Voltage_mVolt = 0; /* Value of voltage calculated from ADC conversion data (unit: mV) */ /* Variable to report status of ADC group regular unitary conversion */ /* 0: ADC group regular unitary conversion is not completed */ /* 1: ADC group regular unitary conversion is completed */ /* 2: ADC group regular unitary conversion has not been started yet */ /* (initial state) */ __IO uint8_t ubAdcGrpRegularUnitaryConvStatus = 2; /* Variable set into ADC interruption callback */ /* Variable to manage push button on board: interface between ExtLine interruption and main program */ __IO uint8_t ubUserButtonClickEvent = RESET; /* Event detection: Set after User Button interrupt */ Private variables /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); static void Configure_ADC(void); #if defined(WAVEFORM_GENERATION) static void Generate_waveform_SW_update_Config(void); static void Generate_waveform_SW_update(void);/* ... */ #endif /* WAVEFORM_GENERATION */ Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization *//* ... */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /*## Configure peripherals #################################################*/ /* Initialize LEDs on board */ BSP_LED_Init(LED2); BSP_LED_Init(LED1); /* Configure User push-button in Interrupt mode */ BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI); /* Configure ADC */ /* Note: This function configures the ADC but does not enable it. */ /* To enable it (ADC activation and conversion start), use */ /* function "HAL_ADC_Start_xxx()". */ /* This is intended to optimize power consumption: */ /* 1. ADC configuration can be done once at the beginning */ /* (ADC disabled, minimal power consumption) */ /* 2. ADC enable (higher power consumption) can be done just before */ /* ADC conversions needed. */ /* Then, possible to perform successive "Activate_ADC()", */ /* "Deactivate_ADC()", ..., without having to set again */ /* ADC configuration. */ Configure_ADC(); #if defined(WAVEFORM_GENERATION) /* Configure the DAC peripheral and generate a constant voltage of Vdda/2. */ Generate_waveform_SW_update_Config();/* ... */ #endif /* WAVEFORM_GENERATION */ /*## Enable peripherals ####################################################*/ /* Note: ADC is enabled afterwards when starting ADC conversion using */ /* function "HAL_ADC_Start_xxx()". */ /* Infinite loop */ while (1) { /* Wait for event on push button to perform following actions */ while ((ubUserButtonClickEvent) == RESET) { }while ((ubUserButtonClickEvent) == RESET) { ... } /* Reset variable for next loop iteration */ ubUserButtonClickEvent = RESET; #if defined(WAVEFORM_GENERATION) /* Modifies modifies the voltage level, to generate a waveform circular, */ /* shape of ramp: Voltage is increasing at each press on push button, */ /* from 0 to maximum range (Vdda) in 5 steps, then starting back from 0V. */ /* Voltage is updated incrementally at each call of this function. */ Generate_waveform_SW_update();/* ... */ #endif /* WAVEFORM_GENERATION */ /* Turn LED off before performing a new ADC conversion start */ BSP_LED_Off(LED1); /* Reset status variable of ADC group regular unitary conversion before */ /* performing a new ADC group regular conversion start. */ if (ubAdcGrpRegularUnitaryConvStatus != 0) { ubAdcGrpRegularUnitaryConvStatus = 0; }if (ubAdcGrpRegularUnitaryConvStatus != 0) { ... } /* Init variable containing ADC conversion data */ uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /*## Start ADC conversions ###############################################*/ /* Start ADC group regular conversion with IT */ /* Note: Perform initial ADC conversion start using driver HAL, */ /* then following ADC conversion start using driver LL. */ /* (mandatory to use driver LL after the first call of */ /* ADC IRQ handler, implemented with driver LL). */ if (LL_ADC_IsEnabled(ADCx) == 0) { if (HAL_ADC_Start_IT(&AdcHandle) != HAL_OK) { /* ADC conversion start error */ Error_Handler(); }if (HAL_ADC_Start_IT(&AdcHandle) != HAL_OK) { ... } }if (LL_ADC_IsEnabled(ADCx) == 0) { ... } /* ########## Starting from this point HAL API must not be used ########## */ else { /* Start ADC group regular conversion */ /* Note: Hardware constraint (refer to description of the functions */ /* below): */ /* On this STM32 series, setting of these features are not */ /* conditioned to ADC state. */ /* However, in order to be compliant with other STM32 series */ /* and to show the best practice usages, ADC state is checked. */ /* Software can be optimized by removing some of these checks, if */ /* they are not relevant considering previous settings and actions */ /* in user application. */ if (LL_ADC_IsEnabled(ADCx) == 1) { LL_ADC_REG_StartConversionSWStart(ADCx); }if (LL_ADC_IsEnabled(ADCx) == 1) { ... } else { /* Error: ADC conversion start could not be performed */ Error_Handler(); }else { ... } }else { ... } /* Note: Variable "ubUserButtonClickEvent" is set into push button */ /* IRQ handler, refer to function "HAL_GPIO_EXTI_Callback()". */ /* Note: ADC conversions data are stored into variable */ /* "uhADCxConvertedData". */ /* (for debug: see variable content into watch window). */ }while (1) { ... } }{ ... } /** * @brief Configure ADC (ADC instance: ADCx) and GPIO used by ADC channels. * @note Using HAL driver, configuration of GPIO used by ADC channels, * NVIC and clock source at top level (RCC) * are not implemented into this function, * must be implemented into function "HAL_ADC_MspInit()". * @param None * @retval None *//* ... */ void Configure_ADC(void) { ADC_ChannelConfTypeDef sConfig; /*## Configuration of ADC ##################################################*/ /*## Configuration of ADC hierarchical scope: ##############################*/ /*## common to several ADC, ADC instance, ADC group regular ###############*/ /* Set ADC instance of HAL ADC handle AdcHandle */ AdcHandle.Instance = ADCx; /* Configuration of HAL ADC handle init structure: */ /* parameters of scope ADC instance and ADC group regular. */ /* Note: On this STM32 family, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ AdcHandle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; AdcHandle.Init.Resolution = ADC_RESOLUTION_12B; AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT; AdcHandle.Init.ScanConvMode = DISABLE; /* Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) */ AdcHandle.Init.EOCSelection = ADC_EOC_SINGLE_CONV; AdcHandle.Init.ContinuousConvMode = DISABLE; /* Continuous mode disabled to have only 1 conversion at each conversion trig */ AdcHandle.Init.NbrOfConversion = 1; /* Parameter discarded because sequencer is disabled */ AdcHandle.Init.DiscontinuousConvMode = DISABLE; /* Parameter discarded because sequencer is disabled */ AdcHandle.Init.NbrOfDiscConversion = 1; /* Parameter discarded because sequencer is disabled */ AdcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START; /* Software start to trig the 1st conversion manually, without external event */ AdcHandle.Init.DMAContinuousRequests = DISABLE; /* ADC with DMA transfer: continuous requests to DMA disabled (default state) since DMA is not used in this example. */ if (HAL_ADC_Init(&AdcHandle) != HAL_OK) { /* ADC initialization error */ Error_Handler(); }if (HAL_ADC_Init(&AdcHandle) != HAL_OK) { ... } /*## Configuration of ADC hierarchical scope: ##############################*/ /*## ADC group injected and channels mapped on group injected ##############*/ /* Note: ADC group injected not used and not configured in this example. */ /* Refer to other ADC examples using this feature. */ /* Note: Call of the functions below are commented because they are */ /* useless in this example: */ /* setting corresponding to default configuration from reset state. */ /*## Configuration of ADC hierarchical scope: ##############################*/ /*## channels mapped on group regular ##############################*/ /* Configuration of channel on ADCx regular group on sequencer rank 1 */ /* Note: On this STM32 family, ADC group regular sequencer is */ /* fully configurable: sequencer length and each rank */ /* affectation to a channel are configurable. */ /* Note: Considering IT occurring after each ADC conversion */ /* (IT by ADC group regular end of unitary conversion), */ /* select sampling time and ADC clock with sufficient */ /* duration to not create an overhead situation in IRQHandler. */ sConfig.Channel = ADCx_CHANNELa; /* ADC channel selection */ sConfig.Rank = 1; /* ADC group regular rank in which is mapped the selected ADC channel */ sConfig.SamplingTime = ADC_SAMPLETIME_56CYCLES; /* ADC channel sampling time */ if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK) { /* Channel Configuration Error */ Error_Handler(); }if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK) { ... } /*## Configuration of ADC hierarchical scope: multimode ####################*/ /* Note: ADC multimode is not available on this device: */ /* only 1 ADC instance is present. */ /*## Configuration of ADC transversal scope: analog watchdog ###############*/ /* Note: ADC analog watchdog not used and not configured in this example. */ /* Refer to other ADC examples using this feature. */ /*## Configuration of ADC transversal scope: oversampling ##################*/ /* Note: Feature not available on this STM32 family */ }{ ... } #if defined(WAVEFORM_GENERATION) /** * @brief For this example, generate a waveform voltage on a spare DAC * channel, so user has just to connect a wire between DAC channel * (pin PA.04) and ADC channel (pin PA.04) to run this example. * (this prevents the user from resorting to an external signal * generator). * This function configures the DAC and generates a constant voltage of Vdda/2. * @note Voltage level can be modifying afterwards using function * "Generate_waveform_SW_update()". * @param None * @retval None *//* ... */ static void Generate_waveform_SW_update_Config(void) { static DAC_ChannelConfTypeDef sConfig; /*## Configure peripherals #################################################*/ /* Configuration of DACx peripheral */ DacHandle.Instance = DACx; if (HAL_DAC_Init(&DacHandle) != HAL_OK) { /* DAC initialization error */ Error_Handler(); }if (HAL_DAC_Init(&DacHandle) != HAL_OK) { ... } /* Configuration of DAC channel */ sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; if (HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK) { /* Channel configuration error */ Error_Handler(); }if (HAL_DAC_ConfigChannel(&DacHandle, &sConfig, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK) { ... } /*## Enable peripherals ####################################################*/ /* Set DAC Channel data register: channel corresponding to ADC channel ADCx_CHANNELa */ /* Set DAC output to 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */ if (HAL_DAC_SetValue(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa, DAC_ALIGN_12B_R, DIGITAL_SCALE_12BITS/2) != HAL_OK) { /* Setting value Error */ Error_Handler(); }if (HAL_DAC_SetValue(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa, DAC_ALIGN_12B_R, DIGITAL_SCALE_12BITS/2) != HAL_OK) { ... } /* Enable DAC Channel: channel corresponding to ADC channel ADCx_CHANNELa */ if (HAL_DAC_Start(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK) { /* Start Error */ Error_Handler(); }if (HAL_DAC_Start(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa) != HAL_OK) { ... } }{ ... } /** * @brief For this example, generate a waveform voltage on a spare DAC * channel, so user has just to connect a wire between DAC channel * (pin PA.04) and ADC channel (pin PA.04) to run this example. * (this prevents the user from resorting to an external signal * generator). * This function modifies the voltage level, to generate a * waveform circular, shape of ramp: Voltage is increasing at each * press on push button, from 0 to maximum range (Vdda) in 5 steps, * then starting back from 0V. * Voltage is updated incrementally at each call of this function. * @note Preliminarily, DAC must be configured once using * function "Generate_waveform_SW_update_Config()". * @param None * @retval None *//* ... */ static void Generate_waveform_SW_update(void) { static uint8_t ub_dac_steps_count = 0; /* Count number of clicks: Incremented after User Button interrupt */ /* Set DAC voltage on channel corresponding to ADCx_CHANNELa */ /* in function of user button clicks count. */ /* Set DAC output on 5 voltage levels, successively to: */ /* - minimum of full range (0 <=> ground 0V) */ /* - 1/4 of full range (4095 <=> Vdda=3.3V): 1023 <=> 0.825V */ /* - 1/2 of full range (4095 <=> Vdda=3.3V): 2048 <=> 1.65V */ /* - 3/4 of full range (4095 <=> Vdda=3.3V): 3071 <=> 2.475V */ /* - maximum of full range (4095 <=> Vdda=3.3V) */ if (HAL_DAC_SetValue(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa, DAC_ALIGN_12B_R, ((DIGITAL_SCALE_12BITS * ub_dac_steps_count) / 4) ) != HAL_OK) { /* Start Error */ Error_Handler(); }if (HAL_DAC_SetValue(&DacHandle, DACx_CHANNEL_TO_ADCx_CHANNELa, DAC_ALIGN_12B_R, ((DIGITAL_SCALE_12BITS * ub_dac_steps_count) / 4) ) != HAL_OK) { ... } /* Wait for voltage settling time */ HAL_Delay(1); /* Manage ub_dac_steps_count to increment it in 4 steps and circularly. */ if (ub_dac_steps_count < 4) { ub_dac_steps_count++; }if (ub_dac_steps_count < 4) { ... } else { ub_dac_steps_count = 0; }else { ... } }{ ... } #endif/* ... */ /* WAVEFORM_GENERATION */ /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 180000000 * HCLK(Hz) = 180000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 360 * PLL_P = 2 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 5 * @param None * @retval None *//* ... */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. *//* ... */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { while(1) { ; } }if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { ... } if(HAL_PWREx_EnableOverDrive() != HAL_OK) { while(1) { ; } }if (HAL_PWREx_EnableOverDrive() != HAL_OK) { ... } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers *//* ... */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { while(1) { ; } }if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { ... } }{ ... } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief EXTI line detection callbacks * @param GPIO_Pin: Specifies the pins connected EXTI line * @retval None *//* ... */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == USER_BUTTON_PIN) { /* Set variable to report push button event to main program */ ubUserButtonClickEvent = SET; }if (GPIO_Pin == USER_BUTTON_PIN) { ... } }{ ... } /* Note: Lines of code commented below correspond to the example using */ /* HAL driver only. */ /* This example demonstrating a mix of HAL and LL drivers has replaced */ /* these lines using LL driver. */ // /** // * @brief Conversion complete callback in non blocking mode // * @param AdcHandle : ADC handle // * @note This function is executed when the ADC group regular // * sequencer has converted one rank of the sequence. // * Therefore, this function is executed as many times as number // * of ranks in the sequence. // * @note This example shows a simple way to report end of conversion // * and get conversion result. You can add your own implementation. // * @retval None // */ // void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *AdcHandle) // { // /* Retrieve ADC conversion data */ // uhADCxConvertedData = HAL_ADC_GetValue(AdcHandle); // // /* Computation of ADC conversions raw data to physical values */ // /* using LL ADC driver helper macro. */ // uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); // // /* Update status variable of ADC unitary conversion */ // ubAdcGrpRegularUnitaryConvStatus = 1; // // /* Set LED depending on ADC unitary conversion status */ // /* - Turn-on if ADC group regular unitary conversion is completed */ // /* - Turn-off if ADC group regular unitary conversion is not completed */ // BSP_LED_On(LED1); // } // // /** // * @brief ADC error callback in non blocking mode // * (ADC conversion with interruption or transfer by DMA) // * @param hadc: ADC handle // * @retval None // */ // void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) // { // /* In case of ADC error, call main error handler */ // Error_Handler(); // } /** * @brief ADC group regular end of unitary conversion interruption callback * @note This function is executed when the ADC group regular * sequencer has converted one rank of the sequence. * Therefore, this function is executed as many times as number * of ranks in the sequence. * @retval None *//* ... */ void AdcGrpRegularUnitaryConvComplete_Callback() { /* Retrieve ADC conversion data */ /* (data maximum amplitude corresponds to ADC resolution: 12 bits) */ uhADCxConvertedData = LL_ADC_REG_ReadConversionData12(ADCx); /* Computation of ADC conversions raw data to physical values */ /* using LL ADC driver helper macro. */ uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); /* Update status variable of ADC unitary conversion */ ubAdcGrpRegularUnitaryConvStatus = 1; /* Set LED depending on ADC unitary conversion status */ /* - Turn-on if ADC group regular unitary conversion is completed */ /* - Turn-off if ADC group regular unitary conversion is not completed */ BSP_LED_On(LED1); }{ ... } /** * @brief ADC group regular overrun interruption callback * @note This function is executed when ADC group regular * overrun error occurs. * @retval None *//* ... */ void AdcGrpRegularOverrunError_Callback(void) { /* Note: Disable ADC interruption that caused this error before entering in */ /* infinite loop below. */ /* Disable ADC group regular overrun interruption */ LL_ADC_DisableIT_OVR(ADCx); /* In case of ADC error, call main error handler */ Error_Handler(); }{ ... } #if defined(WAVEFORM_GENERATION) /** * @brief DAC error callback * @param None * @retval None *//* ... */ void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac) { /* In case of DAC error, call main error handler */ Error_Handler(); }{ ... } #endif/* ... */ /* WAVEFORM_GENERATION */ /** * @brief This function is executed in case of error occurrence. * @param None * @retval None *//* ... */ static void Error_Handler(void) { /* User may add here some code to deal with a potential error */ /* In case of error, LED2 is toggling at a frequency of 1Hz */ while(1) { /* Toggle LED2 */ BSP_LED_Toggle(LED2); HAL_Delay(500); }while (1) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.