1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
70
71
72
77
78
79
80
81
82
83
84
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
119
120
121
122
123
124
125
126
127
131
132
133
134
135
136
137
138
139
140
141
142
143
144
148
149
150
151
152
153
154
155
156
160
161
162
163
164
165
166
170
171
172
176
177
178
179
180
181
182
183
187
188
189
190
191
192
193
197
198
199
204
209
210
211
212
213
214
215
216
217
218
222
223
224
225
226
227
228
229
230
231
236
237
238
239
240
241
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
281
282
283
284
285
286
287
288
289
290
291
292
293
294
296
297
298
299
300
301
302
303
304
309
310
311
316
324
325
332
346
347
353
362
363
364
383
384
387
388
391
392
/* ... */
#include "main.h"
/* ... */
/* ... */
/* ... */
Includes
#define SPI_ACK_BYTES 0xA5A5
#define SPI_NACK_BYTES 0xDEAD
#define SPI_SLAVE_SYNBYTE 0x53
#define SPI_MASTER_SYNBYTE 0xAC
#define SPI_TIMEOUT_MAX 0x1000
#define ADDRCMD_MASTER_READ ((uint16_t)0x1234)
#define ADDRCMD_MASTER_WRITE ((uint16_t)0x5678)
#define CMD_LENGTH ((uint16_t)0x0004)
#define DATA_LENGTH ((uint16_t)0x0020)
9 defines
Private define
SPI_HandleTypeDef SpiHandle;
uint8_t aTxMasterBuffer[] = "SPI - MASTER - Transmit message";
uint8_t aTxSlaveBuffer[] = "SPI - SLAVE - Transmit message ";
uint8_t aRxBuffer[DATA_LENGTH];
Private variables
static void Slave_Synchro(void);
static void SystemClock_Config(void);
static void Error_Handler(void);
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength);
Private function prototypes
/* ... */
int main(void)
{
uint16_t addrcmd = 0;
uint16_t comlength = 0;
uint8_t pAddrcmd[CMD_LENGTH] = {0x00};
uint16_t ackbyte = 0x0000;
/* ... */
HAL_Init();
SystemClock_Config();
BSP_LED_Init(LED5);
BSP_LED_Init(LED6);
SpiHandle.Instance = SPIx;
SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
SpiHandle.Init.Direction = SPI_DIRECTION_2LINES;
SpiHandle.Init.CLKPhase = SPI_PHASE_2EDGE;
SpiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
SpiHandle.Init.CRCPolynomial = 7;
SpiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
SpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
SpiHandle.Init.NSS = SPI_NSS_SOFT;
SpiHandle.Init.TIMode = SPI_TIMODE_DISABLE;
SpiHandle.Init.Mode = SPI_MODE_SLAVE;
if(HAL_SPI_Init(&SpiHandle) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Init(&SpiHandle) != HAL_OK) { ... }
while(1)
{
Slave_Synchro();
if(HAL_SPI_Receive(&SpiHandle, pAddrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Receive(&SpiHandle, pAddrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... }
addrcmd = (uint16_t) ((pAddrcmd[0] << 8) | pAddrcmd[1]);
comlength = (uint16_t) ((pAddrcmd[2] << 8) | pAddrcmd[3]);
if(((addrcmd == ADDRCMD_MASTER_READ) || (addrcmd == ADDRCMD_MASTER_WRITE)) && (comlength > 0))
{
Slave_Synchro();
ackbyte = SPI_ACK_BYTES;
if(HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbyte, sizeof(ackbyte), SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbyte, sizeof(ackbyte), SPI_TIMEOUT_MAX) != HAL_OK) { ... }
if(addrcmd == ADDRCMD_MASTER_READ)
{
Slave_Synchro();
if(HAL_SPI_Transmit(&SpiHandle, aTxSlaveBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Transmit(&SpiHandle, aTxSlaveBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... }
Slave_Synchro();
ackbyte = 0;
if(HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbyte, sizeof(ackbyte), SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbyte, sizeof(ackbyte), SPI_TIMEOUT_MAX) != HAL_OK) { ... }
if(ackbyte != SPI_ACK_BYTES)
{
Error_Handler();
}if (ackbyte != SPI_ACK_BYTES) { ... }
}if (addrcmd == ADDRCMD_MASTER_READ) { ... }
else if(addrcmd == ADDRCMD_MASTER_WRITE)
{
Slave_Synchro();
if(HAL_SPI_Receive(&SpiHandle, aRxBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Receive(&SpiHandle, aRxBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... }
Slave_Synchro();
ackbyte = SPI_ACK_BYTES;
if(HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbyte, sizeof(ackbyte), SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbyte, sizeof(ackbyte), SPI_TIMEOUT_MAX) != HAL_OK) { ... }
if(Buffercmp((uint8_t*)aTxMasterBuffer, (uint8_t*)aRxBuffer, DATA_LENGTH))
{
Error_Handler();
}if (Buffercmp((uint8_t*)aTxMasterBuffer, (uint8_t*)aRxBuffer, DATA_LENGTH)) { ... }
else
{
BSP_LED_Toggle(LED6);
}else { ... }
}else if (addrcmd == ADDRCMD_MASTER_WRITE) { ... }
}if (((addrcmd == ADDRCMD_MASTER_READ) || (addrcmd == ADDRCMD_MASTER_WRITE)) && (comlength > 0)) { ... }
else
{
Slave_Synchro();
ackbyte = SPI_NACK_BYTES;
if(HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbyte, sizeof(ackbyte), SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbyte, sizeof(ackbyte), SPI_TIMEOUT_MAX) != HAL_OK) { ... }
Error_Handler();
}else { ... }
Flush_Buffer(aRxBuffer, DATA_LENGTH);
}while (1) { ... }
}{ ... }
/* ... */
static void Slave_Synchro(void)
{
uint8_t txackbyte = SPI_SLAVE_SYNBYTE, rxackbyte = 0x00;
do
{
if (HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbyte, (uint8_t *)&rxackbyte, 1, HAL_MAX_DELAY) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbyte, (uint8_t *)&rxackbyte, 1, HAL_MAX_DELAY) != HAL_OK) { ... }
...}
while (rxackbyte != SPI_MASTER_SYNBYTE);
}{ ... }
/* ... */
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
__HAL_RCC_PWR_CLK_ENABLE();
/* ... */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/* ... */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if (HAL_GetREVID() >= 0x1001)
{
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
}if (HAL_GetREVID() >= 0x1001) { ... }
}{ ... }
/* ... */
static void Error_Handler(void)
{
BSP_LED_On(LED5);
while(1)
{
}while (1) { ... }
}{ ... }
/* ... */
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}if ((*pBuffer1) != *pBuffer2) { ... }
pBuffer1++;
pBuffer2++;
}while (BufferLength--) { ... }
return 0;
}{ ... }
/* ... */
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength)
{
while (BufferLength--)
{
*pBuffer = 0;
pBuffer++;
}while (BufferLength--) { ... }
}{ ... }
#ifdef USE_FULL_ASSERT
/* ... */
void assert_failed(uint8_t* file, uint32_t line)
{
/* ... */
while (1)
{
}while (1) { ... }
}assert_failed (uint8_t* file, uint32_t line) { ... }
/* ... */#endif
/* ... */
/* ... */
/* ... */