1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
68
69
70
75
76
77
78
79
80
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
117
118
119
120
121
122
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
145
146
147
148
149
150
154
155
156
157
158
159
160
161
165
166
167
168
169
170
174
175
180
181
182
187
192
193
194
195
196
197
198
199
200
201
202
206
207
208
209
210
211
215
216
217
218
219
220
221
225
226
227
228
229
230
234
235
240
241
242
243
244
245
246
247
248
249
250
251
256
263
264
269
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
313
314
315
316
317
318
319
320
321
322
323
324
325
326
328
329
330
331
332
333
334
335
336
341
342
343
348
356
357
364
378
379
385
394
395
396
415
416
419
420
423
424
/* ... */
#include "main.h"
/* ... */
/* ... */
/* ... */
Includes
#define SPI_ACK_BYTES 0xA5A5
#define SPI_NACK_BYTES 0xDEAD
#define SPI_TIMEOUT_MAX 0x1000
#define SPI_SLAVE_SYNBYTE 0x53
#define SPI_MASTER_SYNBYTE 0xAC
#define ADDRCMD_MASTER_READ ((uint16_t)0x1234)
#define ADDRCMD_MASTER_WRITE ((uint16_t)0x5678)
#define CMD_LENGTH ((uint16_t)0x0004)
#define DATA_LENGTH ((uint16_t)0x0020)
9 definesPrivate define
SPI_HandleTypeDef SpiHandle;
FlagStatus TestReady = RESET;
uint8_t aTxMasterBuffer[] = "SPI - MASTER - Transmit message";
uint8_t aTxSlaveBuffer[] = "SPI - SLAVE - Transmit message ";
uint8_t aRxBuffer[DATA_LENGTH];
Private variables
static void Master_Synchro(void);
static void SystemClock_Config(void);
static void Error_Handler(void);
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength);Private function prototypes
/* ... */
int main(void)
{
uint8_t addrcmd[CMD_LENGTH] = {0};
uint16_t ackbytes = 0x0000;
/* ... */
HAL_Init();
SystemClock_Config();
BSP_LED_Init(LED3);
BSP_LED_Init(LED4);
BSP_LED_Init(LED5);
BSP_LED_Init(LED6);
SpiHandle.Instance = SPIx;
SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
SpiHandle.Init.Direction = SPI_DIRECTION_2LINES;
SpiHandle.Init.CLKPhase = SPI_PHASE_2EDGE;
SpiHandle.Init.CLKPolarity = SPI_POLARITY_LOW;
SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
SpiHandle.Init.CRCPolynomial = 7;
SpiHandle.Init.DataSize = SPI_DATASIZE_8BIT;
SpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
SpiHandle.Init.NSS = SPI_NSS_SOFT;
SpiHandle.Init.TIMode = SPI_TIMODE_DISABLE;
SpiHandle.Init.Mode = SPI_MODE_MASTER;
if(HAL_SPI_Init(&SpiHandle) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Init(&SpiHandle) != HAL_OK) { ... }
BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_EXTI);
while (TestReady != SET)
{
BSP_LED_Toggle(LED3);
HAL_Delay(40);
}while (TestReady != SET) { ... }
BSP_LED_Off(LED3);
while(1)
{
Master_Synchro();
addrcmd[0] = (uint8_t) (ADDRCMD_MASTER_READ >> 8);
addrcmd[1] = (uint8_t) ADDRCMD_MASTER_READ;
addrcmd[2] = (uint8_t) (DATA_LENGTH >> 8);
addrcmd[3] = (uint8_t) DATA_LENGTH;
if(HAL_SPI_Transmit(&SpiHandle, addrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Transmit(&SpiHandle, addrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... }
Master_Synchro();
ackbytes = 0;
if(HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... }
if(ackbytes == SPI_ACK_BYTES)
{
Master_Synchro();
if(HAL_SPI_Receive(&SpiHandle, aRxBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Receive(&SpiHandle, aRxBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... }
Master_Synchro();
ackbytes = SPI_ACK_BYTES;
if(HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Transmit(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... }
}if (ackbytes == SPI_ACK_BYTES) { ... }
else
{
Error_Handler();
}else { ... }
if(Buffercmp((uint8_t*)aTxSlaveBuffer, (uint8_t*)aRxBuffer, CMD_LENGTH))
{
Error_Handler();
}if (Buffercmp((uint8_t*)aTxSlaveBuffer, (uint8_t*)aRxBuffer, CMD_LENGTH)) { ... }
else
{
BSP_LED_Toggle(LED6);
}else { ... }
Master_Synchro();
addrcmd[0] = (uint8_t) (ADDRCMD_MASTER_WRITE >> 8);
addrcmd[1] = (uint8_t) ADDRCMD_MASTER_WRITE;
addrcmd[2] = (uint8_t) (DATA_LENGTH >> 8);
addrcmd[3] = (uint8_t) DATA_LENGTH;
if(HAL_SPI_Transmit(&SpiHandle, addrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Transmit(&SpiHandle, addrcmd, CMD_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... }
Master_Synchro();
ackbytes = 0;
if(HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... }
if(ackbytes == SPI_ACK_BYTES)
{
Master_Synchro();
if(HAL_SPI_Transmit(&SpiHandle, aTxMasterBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Transmit(&SpiHandle, aTxMasterBuffer, DATA_LENGTH, SPI_TIMEOUT_MAX) != HAL_OK) { ... }
Master_Synchro();
ackbytes = 0;
if(HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_Receive(&SpiHandle, (uint8_t *)&ackbytes, sizeof(ackbytes), SPI_TIMEOUT_MAX) != HAL_OK) { ... }
}if (ackbytes == SPI_ACK_BYTES) { ... }
else
{
Error_Handler();
}else { ... }
Flush_Buffer(aRxBuffer, DATA_LENGTH);
BSP_LED_Toggle(LED4);
HAL_Delay(100);
}while (1) { ... }
}{ ... }
/* ... */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if(KEY_BUTTON_PIN == GPIO_Pin)
{
TestReady = SET;
}if (KEY_BUTTON_PIN == GPIO_Pin) { ... }
}{ ... }
/* ... */
static void Master_Synchro(void)
{
uint8_t txackbytes = SPI_MASTER_SYNBYTE, rxackbytes = 0x00;
do
{
if(HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbytes, (uint8_t *)&rxackbytes, 1, HAL_MAX_DELAY) != HAL_OK)
{
Error_Handler();
}if (HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t *)&txackbytes, (uint8_t *)&rxackbytes, 1, HAL_MAX_DELAY) != HAL_OK) { ... }
...}while(rxackbytes != SPI_SLAVE_SYNBYTE);
}{ ... }
/* ... */
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
__HAL_RCC_PWR_CLK_ENABLE();
/* ... */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/* ... */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if (HAL_GetREVID() >= 0x1001)
{
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
}if (HAL_GetREVID() >= 0x1001) { ... }
}{ ... }
/* ... */
static void Error_Handler(void)
{
BSP_LED_On(LED5);
while(1)
{
}while (1) { ... }
}{ ... }
/* ... */
static uint16_t Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
while (BufferLength--)
{
if((*pBuffer1) != *pBuffer2)
{
return BufferLength;
}if ((*pBuffer1) != *pBuffer2) { ... }
pBuffer1++;
pBuffer2++;
}while (BufferLength--) { ... }
return 0;
}{ ... }
/* ... */
static void Flush_Buffer(uint8_t* pBuffer, uint16_t BufferLength)
{
while (BufferLength--)
{
*pBuffer = 0;
pBuffer++;
}while (BufferLength--) { ... }
}{ ... }
#ifdef USE_FULL_ASSERT
/* ... */
void assert_failed(uint8_t* file, uint32_t line)
{
/* ... */
while (1)
{
}while (1) { ... }
}assert_failed (uint8_t* file, uint32_t line) { ... }
/* ... */#endif
/* ... */
/* ... */
/* ... */