Select one of the symbols to view example projects that use it.
 
Outline
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_heap_caps.h"
#include "multi_heap.h"
#include "esp_log.h"
#include "heap_private.h"
#include "esp_system.h"
alloc_failed_callback
heap_caps_alloc_failed(size_t, uint32_t, const char *)
heap_caps_register_failed_alloc_callback(esp_alloc_failed_hook_t)
heap_caps_match(const heap_t *, uint32_t)
heap_caps_malloc(size_t, uint32_t)
#define MALLOC_DISABLE_EXTERNAL_ALLOCS
malloc_alwaysinternal_limit
heap_caps_malloc_extmem_enable(size_t)
heap_caps_malloc_default(size_t)
heap_caps_realloc_default(void *, size_t)
heap_caps_malloc_prefer(size_t, size_t, ...)
heap_caps_realloc_prefer(void *, size_t, size_t, ...)
heap_caps_calloc_prefer(size_t, size_t, size_t, ...)
heap_caps_realloc(void *, size_t, uint32_t)
heap_caps_calloc(size_t, size_t, uint32_t)
heap_caps_get_total_size(uint32_t)
heap_caps_get_free_size(uint32_t)
heap_caps_get_minimum_free_size(uint32_t)
heap_caps_get_largest_free_block(uint32_t)
min_free_bytes_monitoring
heap_caps_monitor_local_minimum_free_size_start()
heap_caps_monitor_local_minimum_free_size_stop()
heap_caps_get_info(multi_heap_info_t *, uint32_t)
heap_caps_print_heap_info(uint32_t)
heap_caps_check_integrity(uint32_t, bool)
heap_caps_check_integrity_all(bool)
heap_caps_check_integrity_addr(intptr_t, bool)
heap_caps_dump(uint32_t)
heap_caps_dump_all()
heap_caps_get_allocated_size(void *)
heap_caps_aligned_check_args(size_t, size_t, uint32_t, const char *)
heap_caps_aligned_alloc_default(size_t, size_t)
heap_caps_aligned_alloc(size_t, size_t, uint32_t)
heap_caps_aligned_free(void *)
heap_caps_aligned_calloc(size_t, size_t, size_t, uint32_t)
walker_data
heap_caps_walker(void *, size_t, int, void *)
heap_caps_walk(uint32_t, heap_caps_walker_cb_t, void *)
heap_caps_walk_all(heap_caps_walker_cb_t, void *)
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/heap/heap_caps.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 *//* ... */ #include <stdbool.h> #include <string.h> #include <assert.h> #include <stdio.h> #include <sys/param.h> #include "esp_attr.h" #include "esp_heap_caps.h" #include "multi_heap.h" #include "esp_log.h" #include "heap_private.h" #include "esp_system.h"11 includes /* This file, combined with a region allocator that supports multiple heaps, solves the problem that the ESP32 has RAM that's slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory, some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible memory allocation possible, this code makes it possible to request memory that has certain capabilities. The code will then use its knowledge of how the memory is configured along with a priority scheme to allocate that memory in the most sane way possible. This should optimize the amount of RAM accessible to the code without hardwiring addresses. *//* ... */ static esp_alloc_failed_hook_t alloc_failed_callback; #ifdef CONFIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS HEAP_IRAM_ATTR static void hex_to_str(char buf[8], uint32_t n) { for (int i = 0; i < 8; i++) { uint8_t b4 = (n >> (28 - i * 4)) & 0b1111; buf[i] = b4 <= 9 ? '0' + b4 : 'a' + b4 - 10; }{...} }{...} HEAP_IRAM_ATTR static void fmt_abort_str(char dest[48], size_t size, uint32_t caps) { char sSize[8]; char sCaps[8]; hex_to_str(sSize, size); hex_to_str(sCaps, caps); memcpy(dest, "Mem alloc fail. size 0x00000000 caps 0x00000000", 48); memcpy(dest + 23, sSize, 8); memcpy(dest + 39, sCaps, 8); }{...} /* ... */#endif HEAP_IRAM_ATTR NOINLINE_ATTR static void heap_caps_alloc_failed(size_t requested_size, uint32_t caps, const char *function_name) { if (alloc_failed_callback) { alloc_failed_callback(requested_size, caps, function_name); }{...} #ifdef CONFIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS char buf[48]; fmt_abort_str(buf, requested_size, caps); esp_system_abort(buf);/* ... */ #endif }{ ... } esp_err_t heap_caps_register_failed_alloc_callback(esp_alloc_failed_hook_t callback) { if (callback == NULL) { return ESP_ERR_INVALID_ARG; }{...} alloc_failed_callback = callback; return ESP_OK; }{ ... } bool heap_caps_match(const heap_t *heap, uint32_t caps) { return heap->heap != NULL && ((get_all_caps(heap) & caps) == caps); }{ ... } /* Routine to allocate a bit of memory with certain capabilities. caps is a bitfield of MALLOC_CAP_* bits. *//* ... */ HEAP_IRAM_ATTR void *heap_caps_malloc( size_t size, uint32_t caps) { void* ptr = heap_caps_malloc_base(size, caps); if (!ptr && size > 0){ heap_caps_alloc_failed(size, caps, __func__); }{...} return ptr; }{ ... } #define MALLOC_DISABLE_EXTERNAL_ALLOCS -1 //Dual-use: -1 (=MALLOC_DISABLE_EXTERNAL_ALLOCS) disables allocations in external memory, >=0 sets the limit for allocations preferring internal memory. static int malloc_alwaysinternal_limit=MALLOC_DISABLE_EXTERNAL_ALLOCS; void heap_caps_malloc_extmem_enable(size_t limit) { malloc_alwaysinternal_limit=limit; }{ ... } /* Default memory allocation implementation. Should return standard 8-bit memory. malloc() essentially resolves to this function. *//* ... */ HEAP_IRAM_ATTR void *heap_caps_malloc_default( size_t size ) { if (malloc_alwaysinternal_limit==MALLOC_DISABLE_EXTERNAL_ALLOCS) { return heap_caps_malloc( size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL); }{...} else { // use heap_caps_malloc_base() since we'll // check for allocation failure ourselves void *r; if (size <= (size_t)malloc_alwaysinternal_limit) { r=heap_caps_malloc_base( size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL ); }{...} else { r=heap_caps_malloc_base( size, MALLOC_CAP_DEFAULT | MALLOC_CAP_SPIRAM ); }{...} if (r==NULL && size > 0) { //try again while being less picky r=heap_caps_malloc_base( size, MALLOC_CAP_DEFAULT ); }{...} // allocation failure? if (r==NULL && size > 0){ heap_caps_alloc_failed(size, MALLOC_CAP_DEFAULT, __func__); }{...} return r; }{...} }{ ... } /* Same for realloc() Note: keep the logic in here the same as in heap_caps_malloc_default (or merge the two as soon as this gets more complex...) *//* ... */ HEAP_IRAM_ATTR void *heap_caps_realloc_default( void *ptr, size_t size ) { if (malloc_alwaysinternal_limit==MALLOC_DISABLE_EXTERNAL_ALLOCS) { return heap_caps_realloc( ptr, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL ); }{...} else { // We use heap_caps_realloc_base() since we'll // handle allocation failure ourselves void *r; if (size <= (size_t)malloc_alwaysinternal_limit) { r=heap_caps_realloc_base( ptr, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL); }{...} else { r=heap_caps_realloc_base( ptr, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_SPIRAM); }{...} if (r==NULL && size>0) { //We needed to allocate memory, but we didn't. Try again while being less picky. r=heap_caps_realloc_base( ptr, size, MALLOC_CAP_DEFAULT); }{...} // allocation failure? if (r==NULL && size>0){ heap_caps_alloc_failed(size, MALLOC_CAP_DEFAULT, __func__); }{...} return r; }{...} }{ ... } /* Memory allocation as preference in decreasing order. *//* ... */ HEAP_IRAM_ATTR void *heap_caps_malloc_prefer( size_t size, size_t num, ... ) { va_list argp; va_start( argp, num ); void *r = NULL; uint32_t caps = MALLOC_CAP_DEFAULT; while (num--) { caps = va_arg( argp, uint32_t ); r = heap_caps_malloc_base( size, caps ); if (r != NULL || size == 0) { break; }{...} }{...} if (r == NULL && size > 0){ heap_caps_alloc_failed(size, caps, __func__); }{...} va_end( argp ); return r; }{ ... } /* Memory reallocation as preference in decreasing order. *//* ... */ HEAP_IRAM_ATTR void *heap_caps_realloc_prefer( void *ptr, size_t size, size_t num, ... ) { va_list argp; va_start( argp, num ); void *r = NULL; uint32_t caps = MALLOC_CAP_DEFAULT; while (num--) { caps = va_arg( argp, uint32_t ); r = heap_caps_realloc_base( ptr, size, caps ); if (r != NULL || size == 0) { break; }{...} }{...} if (r == NULL && size > 0){ heap_caps_alloc_failed(size, caps, __func__); }{...} va_end( argp ); return r; }{ ... } /* Memory callocation as preference in decreasing order. *//* ... */ HEAP_IRAM_ATTR void *heap_caps_calloc_prefer( size_t n, size_t size, size_t num, ... ) { va_list argp; va_start( argp, num ); void *r = NULL; uint32_t caps = MALLOC_CAP_DEFAULT; while (num--) { caps = va_arg( argp, uint32_t ); r = heap_caps_calloc_base( n, size, caps ); if (r != NULL || size == 0){ break; }{...} }{...} if (r == NULL && size > 0){ heap_caps_alloc_failed(size, caps, __func__); }{...} va_end( argp ); return r; }{ ... } HEAP_IRAM_ATTR void *heap_caps_realloc( void *ptr, size_t size, uint32_t caps) { ptr = heap_caps_realloc_base(ptr, size, caps); if (ptr == NULL && size > 0){ heap_caps_alloc_failed(size, caps, __func__); }{...} return ptr; }{ ... } HEAP_IRAM_ATTR void *heap_caps_calloc( size_t n, size_t size, uint32_t caps) { void* ptr = heap_caps_calloc_base(n, size, caps); if (!ptr && size > 0){ heap_caps_alloc_failed(n * size, caps, __func__); }{...} return ptr; }{ ... } size_t heap_caps_get_total_size(uint32_t caps) { size_t total_size = 0; heap_t *heap; SLIST_FOREACH(heap, &registered_heaps, next) { if (heap_caps_match(heap, caps)) { total_size += (heap->end - heap->start); }{...} }{...} return total_size; }{ ... } size_t heap_caps_get_free_size( uint32_t caps ) { size_t ret = 0; heap_t *heap; SLIST_FOREACH(heap, &registered_heaps, next) { if (heap_caps_match(heap, caps)) { ret += multi_heap_free_size(heap->heap); }{...} }{...} return ret; }{ ... } size_t heap_caps_get_minimum_free_size( uint32_t caps ) { size_t ret = 0; heap_t *heap; SLIST_FOREACH(heap, &registered_heaps, next) { if (heap_caps_match(heap, caps)) { ret += multi_heap_minimum_free_size(heap->heap); }{...} }{...} return ret; }{ ... } size_t heap_caps_get_largest_free_block( uint32_t caps ) { multi_heap_info_t info; heap_caps_get_info(&info, caps); return info.largest_free_block; }{ ... } static struct { size_t *values; // Array of minimum_free_bytes used to keep the different values when starting monitoring size_t counter; // Keep count of registered heap when monitoring to prevent any added heap to create an out of bound access on values multi_heap_lock_t mux; // protect access to min_free_bytes_monitoring fields in start/stop monitoring functions }{ ... } min_free_bytes_monitoring = {NULL, 0, MULTI_HEAP_LOCK_STATIC_INITIALIZER}; esp_err_t heap_caps_monitor_local_minimum_free_size_start(void) { // update minimum_free_bytes on all affected heap, and store the "old value" // as a snapshot of the heaps minimum_free_bytes state. heap_t *heap = NULL; MULTI_HEAP_LOCK(&min_free_bytes_monitoring.mux); if (min_free_bytes_monitoring.values == NULL) { SLIST_FOREACH(heap, &registered_heaps, next) { min_free_bytes_monitoring.counter++; }{...} min_free_bytes_monitoring.values = heap_caps_malloc(sizeof(size_t) * min_free_bytes_monitoring.counter, MALLOC_CAP_DEFAULT); assert(min_free_bytes_monitoring.values != NULL && "not enough memory to store min_free_bytes value"); memset(min_free_bytes_monitoring.values, 0xFF, sizeof(size_t) * min_free_bytes_monitoring.counter); }{...} heap = SLIST_FIRST(&registered_heaps); for (size_t counter = 0; counter < min_free_bytes_monitoring.counter; counter++) { size_t old_minimum = multi_heap_reset_minimum_free_bytes(heap->heap); if (min_free_bytes_monitoring.values[counter] > old_minimum) { min_free_bytes_monitoring.values[counter] = old_minimum; }{...} heap = SLIST_NEXT(heap, next); }{...} MULTI_HEAP_UNLOCK(&min_free_bytes_monitoring.mux); return ESP_OK; }{ ... } esp_err_t heap_caps_monitor_local_minimum_free_size_stop(void) { if (min_free_bytes_monitoring.values == NULL) { return ESP_FAIL; }{...} MULTI_HEAP_LOCK(&min_free_bytes_monitoring.mux); heap_t *heap = SLIST_FIRST(&registered_heaps); for (size_t counter = 0; counter < min_free_bytes_monitoring.counter; counter++) { multi_heap_restore_minimum_free_bytes(heap->heap, min_free_bytes_monitoring.values[counter]); heap = SLIST_NEXT(heap, next); }{...} heap_caps_free(min_free_bytes_monitoring.values); min_free_bytes_monitoring.values = NULL; min_free_bytes_monitoring.counter = 0; MULTI_HEAP_UNLOCK(&min_free_bytes_monitoring.mux); return ESP_OK; }{ ... } void heap_caps_get_info( multi_heap_info_t *info, uint32_t caps ) { memset(info, 0, sizeof(multi_heap_info_t)); heap_t *heap; SLIST_FOREACH(heap, &registered_heaps, next) { if (heap_caps_match(heap, caps)) { multi_heap_info_t hinfo; multi_heap_get_info(heap->heap, &hinfo); info->total_free_bytes += hinfo.total_free_bytes - MULTI_HEAP_BLOCK_OWNER_SIZE(); info->total_allocated_bytes += (hinfo.total_allocated_bytes - hinfo.allocated_blocks * MULTI_HEAP_BLOCK_OWNER_SIZE()); info->largest_free_block = MAX(info->largest_free_block, hinfo.largest_free_block); info->largest_free_block -= info->largest_free_block ? MULTI_HEAP_BLOCK_OWNER_SIZE() : 0; info->minimum_free_bytes += hinfo.minimum_free_bytes - MULTI_HEAP_BLOCK_OWNER_SIZE(); info->allocated_blocks += hinfo.allocated_blocks; info->free_blocks += hinfo.free_blocks; info->total_blocks += hinfo.total_blocks; }{...} }{...} }{ ... } void heap_caps_print_heap_info( uint32_t caps ) { multi_heap_info_t info; printf("Heap summary for capabilities 0x%08"PRIX32":\n", caps); heap_t *heap; SLIST_FOREACH(heap, &registered_heaps, next) { if (heap_caps_match(heap, caps)) { multi_heap_get_info(heap->heap, &info); printf(" At 0x%08x len %d free %d allocated %d min_free %d\n", heap->start, heap->end - heap->start, info.total_free_bytes, info.total_allocated_bytes, info.minimum_free_bytes); printf(" largest_free_block %d alloc_blocks %d free_blocks %d total_blocks %d\n", info.largest_free_block, info.allocated_blocks, info.free_blocks, info.total_blocks); }{...} }{...} printf(" Totals:\n"); heap_caps_get_info(&info, caps); printf(" free %d allocated %d min_free %d largest_free_block %d\n", info.total_free_bytes, info.total_allocated_bytes, info.minimum_free_bytes, info.largest_free_block); }{ ... } bool heap_caps_check_integrity(uint32_t caps, bool print_errors) { bool all_heaps = caps & MALLOC_CAP_INVALID; bool valid = true; heap_t *heap; SLIST_FOREACH(heap, &registered_heaps, next) { if (heap->heap != NULL && (all_heaps || (get_all_caps(heap) & caps) == caps)) { valid = multi_heap_check(heap->heap, print_errors) && valid; }{...} }{...} return valid; }{ ... } bool heap_caps_check_integrity_all(bool print_errors) { return heap_caps_check_integrity(MALLOC_CAP_INVALID, print_errors); }{ ... } bool heap_caps_check_integrity_addr(intptr_t addr, bool print_errors) { heap_t *heap = find_containing_heap((void *)addr); if (heap == NULL) { return false; }{...} return multi_heap_check(heap->heap, print_errors); }{ ... } void heap_caps_dump(uint32_t caps) { bool all_heaps = caps & MALLOC_CAP_INVALID; heap_t *heap; SLIST_FOREACH(heap, &registered_heaps, next) { if (heap->heap != NULL && (all_heaps || (get_all_caps(heap) & caps) == caps)) { multi_heap_dump(heap->heap); }{...} }{...} }{ ... } void heap_caps_dump_all(void) { heap_caps_dump(MALLOC_CAP_INVALID); }{ ... } size_t heap_caps_get_allocated_size( void *ptr ) { // add the block owner bytes back to ptr before handing over // to multi heap layer. ptr = MULTI_HEAP_REMOVE_BLOCK_OWNER_OFFSET(ptr); heap_t *heap = find_containing_heap(ptr); assert(heap); size_t size = multi_heap_get_allocated_size(heap->heap, ptr); return MULTI_HEAP_REMOVE_BLOCK_OWNER_SIZE(size); }{ ... } static HEAP_IRAM_ATTR esp_err_t heap_caps_aligned_check_args(size_t alignment, size_t size, uint32_t caps, const char *funcname) { if (!alignment) { return ESP_FAIL; }{...} // Alignment must be a power of two: if ((alignment & (alignment - 1)) != 0) { return ESP_FAIL; }{...} if (size == 0) { return ESP_FAIL; }{...} if (MULTI_HEAP_ADD_BLOCK_OWNER_SIZE(size) > HEAP_SIZE_MAX) { // Avoids int overflow when adding small numbers to size, or // calculating 'end' from start+size, by limiting 'size' to the possible range heap_caps_alloc_failed(size, caps, funcname); return ESP_FAIL; }{...} return ESP_OK; }{ ... } HEAP_IRAM_ATTR void *heap_caps_aligned_alloc_default(size_t alignment, size_t size) { void *ret = NULL; if (malloc_alwaysinternal_limit == MALLOC_DISABLE_EXTERNAL_ALLOCS) { return heap_caps_aligned_alloc(alignment, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL); }{...} if (heap_caps_aligned_check_args(alignment, size, MALLOC_CAP_DEFAULT, __func__) != ESP_OK) { return NULL; }{...} if (size <= (size_t)malloc_alwaysinternal_limit) { ret = heap_caps_aligned_alloc_base(alignment, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL); }{...} else { ret = heap_caps_aligned_alloc_base(alignment, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_SPIRAM); }{...} if (ret != NULL) { return ret; }{...} ret = heap_caps_aligned_alloc_base(alignment, size, MALLOC_CAP_DEFAULT); if (ret == NULL) { heap_caps_alloc_failed(size, MALLOC_CAP_DEFAULT, __func__); }{...} return ret; }{ ... } HEAP_IRAM_ATTR void *heap_caps_aligned_alloc(size_t alignment, size_t size, uint32_t caps) { void *ret = NULL; if (heap_caps_aligned_check_args(alignment, size, caps, __func__) != ESP_OK) { return NULL; }{...} ret = heap_caps_aligned_alloc_base(alignment, size, caps); if (ret == NULL) { heap_caps_alloc_failed(size, caps, __func__); }{...} return ret; }{ ... } HEAP_IRAM_ATTR void heap_caps_aligned_free(void *ptr) { heap_caps_free(ptr); }{ ... } void *heap_caps_aligned_calloc(size_t alignment, size_t n, size_t size, uint32_t caps) { size_t size_bytes; if (__builtin_mul_overflow(n, size, &size_bytes)) { return NULL; }{...} void *ptr = heap_caps_aligned_alloc(alignment,size_bytes, caps); if(ptr != NULL) { memset(ptr, 0, size_bytes); }{...} return ptr; }{ ... } typedef struct walker_data { void *opaque_ptr; heap_caps_walker_cb_t cb_func; heap_t *heap; }{ ... } walker_data_t; __attribute__((noinline)) static bool heap_caps_walker(void* block_ptr, size_t block_size, int block_used, void *user_data) { walker_data_t *walker_data = (walker_data_t*)user_data; walker_heap_into_t heap_info = { (intptr_t)walker_data->heap->start, (intptr_t)walker_data->heap->end }{...}; walker_block_info_t block_info = { block_ptr, block_size, (bool)block_used }{...}; return walker_data->cb_func(heap_info, block_info, walker_data->opaque_ptr); }{ ... } void heap_caps_walk(uint32_t caps, heap_caps_walker_cb_t walker_func, void *user_data) { assert(walker_func != NULL); bool all_heaps = caps & MALLOC_CAP_INVALID; heap_t *heap; SLIST_FOREACH(heap, &registered_heaps, next) { if (heap->heap != NULL && (all_heaps || (get_all_caps(heap) & caps) == caps)) { walker_data_t walker_data = {user_data, walker_func, heap}; multi_heap_walk(heap->heap, heap_caps_walker, &walker_data); }{...} }{...} }{ ... } void heap_caps_walk_all(heap_caps_walker_cb_t walker_func, void *user_data) { heap_caps_walk(MALLOC_CAP_INVALID, walker_func, user_data); }{ ... }
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.