1
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
68
69
70
71
73
74
75
76
77
78
79
80
81
82
86
87
88
89
90
91
92
93
94
96
97
98
99
100
101
102
103
104
105
106
107
108
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
170
171
180
181
182
185
186
187
188
192
193
194
195
196
197
200
201
202
208
209
210
211
212
213
214
225
226
235
236
237
260
261
265
266
270
271
272
287
288
289
290
291
292
293
297
298
299
303
304
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
340
341
342
343
344
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
375
376
377
378
379
380
382
383
384
385
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
406
407
410
411
412
413
414
415
416
417
418
419
432
433
434
435
436
437
438
439
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
467
468
469
470
471
472
473
474
475
476
477
478
483
484
485
486
487
488
494
495
496
497
498
499
500
501
502
509
510
511
512
513
514
515
516
517
521
522
523
530
531
532
547
548
549
550
551
552
553
554
555
564
565
566
567
571
572
573
574
575
579
580
581
586
587
588
589
590
591
592
595
596
597
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
621
622
623
624
625
632
633
634
635
636
640
641
642
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
682
683
684
685
686
687
701
702
703
704
705
706
710
722
723
724
725
726
727
728
729
730
731
732
733
737
738
739
744
745
746
747
751
755
756
757
763
764
765
769
773
774
775
776
777
778
779
780
781
782
786
787
788
789
790
794
795
796
797
798
802
803
804
807
808
809
810
811
812
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
844
845
846
847
851
852
853
857
858
859
862
863
869
870
871
872
873
874
875
876
877
880
881
885
886
887
888
889
892
893
898
899
900
901
902
903
905
906
907
908
910
911
912
913
914
915
916
917
920
921
922
923
924
925
926
927
928
929
930
931
932
935
936
937
938
939
940
941
942
943
952
953
957
958
959
960
961
962
963
964
965
966
967
974
975
978
979
980
981
982
983
984
985
986
987
991
992
993
994
995
1002
1015
1016
1017
1022
1023
1024
1025
1026
1035
1050
1051
1052
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1076
1077
1078
1079
1080
1081
1085
1086
1087
1088
1092
1093
1094
1099
1100
1101
1102
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1122
1123
1124
1125
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1150
1151
1152
1155
1156
1157
1158
1159
1162
1163
1164
1167
1168
1169
1170
1171
1172
1173
1174
/* ... */
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <stdbool.h>
#include <sys/lock.h>
#include "soc/rtc.h"
#include "esp_err.h"
#include "esp_phy_init.h"
#include "esp_mac.h"
#include "esp_log.h"
#include "nvs.h"
#include "nvs_flash.h"
#include "esp_efuse.h"
#include "esp_timer.h"
#include "esp_private/esp_sleep_internal.h"
#include "esp_check.h"
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "endian.h"
#include "esp_private/phy.h"
#include "phy_init_data.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/wifi.h"
#include "esp_rom_crc.h"
#include "esp_rom_sys.h"
#include "soc/rtc_periph.h"28 includes
#if CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION
#include "esp_partition.h"
#endif
#if __has_include("soc/syscon_reg.h")
#include "soc/syscon_reg.h"
#endif
#if CONFIG_IDF_TARGET_ESP32
#include "soc/dport_reg.h"
#elif SOC_PM_SUPPORT_PMU_MODEM_STATE
#include "esp_private/sleep_modem.h"
#endif
#include "hal/efuse_hal.h"
#if CONFIG_IDF_TARGET_ESP32
extern wifi_mac_time_update_cb_t s_wifi_mac_time_update_cb;
#endif
static const char* TAG = "phy_init";
static _lock_t s_phy_access_lock;
#if SOC_PM_SUPPORT_MODEM_PD || SOC_PM_SUPPORT_WIFI_PD
#if SOC_PM_MODEM_PD_BY_SW
static DRAM_ATTR struct {
int count;
_lock_t lock;
}{ ... } s_wifi_bt_pd_controller = { .count = 0 };/* ... */
#endif /* ... */
#endif
#if CONFIG_IDF_TARGET_ESP32
static int64_t s_phy_rf_en_ts = 0;/* ... */
#endif
static DRAM_ATTR portMUX_TYPE s_phy_int_mux = portMUX_INITIALIZER_UNLOCKED;
static bool s_is_phy_calibrated = false;
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
static bool s_is_phy_reg_stored = false;
static uint32_t* s_phy_digital_regs_mem = NULL;/* ... */
#endif
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA || CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
static uint8_t s_phy_modem_init_ref = 0;
#endif
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN_EMBED
extern uint8_t multi_phy_init_data_bin_start[] asm("_binary_phy_multiple_init_data_bin_start");
extern uint8_t multi_phy_init_data_bin_end[] asm("_binary_phy_multiple_init_data_bin_end");/* ... */
#endif
static phy_init_data_type_t s_phy_init_data_type = 0;
static phy_init_data_type_t s_current_apply_phy_init_data = 0;
static char s_phy_current_country[PHY_COUNTRY_CODE_LEN] = {0};
static bool s_multiple_phy_init_data_bin = false;
static char* s_phy_type[ESP_PHY_INIT_DATA_TYPE_NUMBER] = {"DEFAULT", "SRRC", "FCC", "CE", "NCC", "KCC", "MIC", "IC",
"ACMA", "ANATEL", "ISED", "WPC", "OFCA", "IFETEL", "RCM"}{...};
static phy_country_to_bin_type_t s_country_code_map_type_table[] = {
{"01", ESP_PHY_INIT_DATA_TYPE_DEFAULT},
{"AT", ESP_PHY_INIT_DATA_TYPE_CE},
{"AU", ESP_PHY_INIT_DATA_TYPE_ACMA},
{"BE", ESP_PHY_INIT_DATA_TYPE_CE},
{"BG", ESP_PHY_INIT_DATA_TYPE_CE},
{"BR", ESP_PHY_INIT_DATA_TYPE_ANATEL},
{"CA", ESP_PHY_INIT_DATA_TYPE_ISED},
{"CH", ESP_PHY_INIT_DATA_TYPE_CE},
{"CN", ESP_PHY_INIT_DATA_TYPE_SRRC},
{"CY", ESP_PHY_INIT_DATA_TYPE_CE},
{"CZ", ESP_PHY_INIT_DATA_TYPE_CE},
{"DE", ESP_PHY_INIT_DATA_TYPE_CE},
{"DK", ESP_PHY_INIT_DATA_TYPE_CE},
{"EE", ESP_PHY_INIT_DATA_TYPE_CE},
{"ES", ESP_PHY_INIT_DATA_TYPE_CE},
{"FI", ESP_PHY_INIT_DATA_TYPE_CE},
{"FR", ESP_PHY_INIT_DATA_TYPE_CE},
{"GB", ESP_PHY_INIT_DATA_TYPE_CE},
{"GR", ESP_PHY_INIT_DATA_TYPE_CE},
{"HK", ESP_PHY_INIT_DATA_TYPE_OFCA},
{"HR", ESP_PHY_INIT_DATA_TYPE_CE},
{"HU", ESP_PHY_INIT_DATA_TYPE_CE},
{"IE", ESP_PHY_INIT_DATA_TYPE_CE},
{"IN", ESP_PHY_INIT_DATA_TYPE_WPC},
{"IS", ESP_PHY_INIT_DATA_TYPE_CE},
{"IT", ESP_PHY_INIT_DATA_TYPE_CE},
{"JP", ESP_PHY_INIT_DATA_TYPE_MIC},
{"KR", ESP_PHY_INIT_DATA_TYPE_KCC},
{"LI", ESP_PHY_INIT_DATA_TYPE_CE},
{"LT", ESP_PHY_INIT_DATA_TYPE_CE},
{"LU", ESP_PHY_INIT_DATA_TYPE_CE},
{"LV", ESP_PHY_INIT_DATA_TYPE_CE},
{"MT", ESP_PHY_INIT_DATA_TYPE_CE},
{"MX", ESP_PHY_INIT_DATA_TYPE_IFETEL},
{"NL", ESP_PHY_INIT_DATA_TYPE_CE},
{"NO", ESP_PHY_INIT_DATA_TYPE_CE},
{"NZ", ESP_PHY_INIT_DATA_TYPE_RCM},
{"PL", ESP_PHY_INIT_DATA_TYPE_CE},
{"PT", ESP_PHY_INIT_DATA_TYPE_CE},
{"RO", ESP_PHY_INIT_DATA_TYPE_CE},
{"SE", ESP_PHY_INIT_DATA_TYPE_CE},
{"SI", ESP_PHY_INIT_DATA_TYPE_CE},
{"SK", ESP_PHY_INIT_DATA_TYPE_CE},
{"TW", ESP_PHY_INIT_DATA_TYPE_NCC},
{"US", ESP_PHY_INIT_DATA_TYPE_FCC},
}{...};/* ... */
#endif
#if CONFIG_ESP_PHY_RECORD_USED_TIME
#define ESP_PHY_MODEM_COUNT_MAX (__builtin_ffs(PHY_MODEM_MAX - 1))
#define ESP_PHY_IS_VALID_MODEM(modem) (__builtin_popcount(modem) == 1 && __builtin_ctz(modem) < ESP_PHY_MODEM_COUNT_MAX)
static DRAM_ATTR struct {
uint64_t used_time;
uint64_t enabled_time;
uint64_t disabled_time;
}{...} s_phy_rf_used_info[ESP_PHY_MODEM_COUNT_MAX];
static IRAM_ATTR void phy_record_time(bool enabled, esp_phy_modem_t modem) {
uint8_t index = __builtin_ctz(modem);
if (enabled) {
s_phy_rf_used_info[index].enabled_time = esp_timer_get_time();
}{...} else {
s_phy_rf_used_info[index].disabled_time = esp_timer_get_time();
s_phy_rf_used_info[index].used_time += s_phy_rf_used_info[index].disabled_time - s_phy_rf_used_info[index].enabled_time;
}{...}
}{...}
esp_err_t phy_query_used_time(uint64_t *used_time, esp_phy_modem_t modem) {
if (!ESP_PHY_IS_VALID_MODEM(modem)) {
return ESP_ERR_INVALID_ARG;
}{...}
uint8_t index = __builtin_ctz(modem);
_lock_acquire(&s_phy_access_lock);
*used_time = s_phy_rf_used_info[index].used_time;
if (s_phy_rf_used_info[index].disabled_time < s_phy_rf_used_info[index].enabled_time) {
*used_time += esp_timer_get_time() - s_phy_rf_used_info[index].enabled_time;
}{...}
_lock_release(&s_phy_access_lock);
return ESP_OK;
}{...}
esp_err_t phy_clear_used_time(esp_phy_modem_t modem) {
if (!ESP_PHY_IS_VALID_MODEM(modem)) {
return ESP_ERR_INVALID_ARG;
}{...}
uint8_t index = __builtin_ctz(modem);
_lock_acquire(&s_phy_access_lock);
if (s_phy_rf_used_info[index].enabled_time > s_phy_rf_used_info[index].disabled_time) {
s_phy_rf_used_info[index].enabled_time = esp_timer_get_time();
}{...} else {
s_phy_rf_used_info[index].enabled_time = s_phy_rf_used_info[index].disabled_time;
}{...}
s_phy_rf_used_info[index].used_time = 0;
_lock_release(&s_phy_access_lock);
return ESP_OK;
}{...}
/* ... */#endif
uint32_t IRAM_ATTR phy_enter_critical(void)
{
if (xPortInIsrContext()) {
portENTER_CRITICAL_ISR(&s_phy_int_mux);
}{...} else {
portENTER_CRITICAL(&s_phy_int_mux);
}{...}
return 0;
}{ ... }
void IRAM_ATTR phy_exit_critical(uint32_t level)
{
if (xPortInIsrContext()) {
portEXIT_CRITICAL_ISR(&s_phy_int_mux);
}{...} else {
portEXIT_CRITICAL(&s_phy_int_mux);
}{...}
}{ ... }
#if CONFIG_IDF_TARGET_ESP32
int64_t esp_phy_rf_get_on_ts(void)
{
return s_phy_rf_en_ts;
}{ ... }
static inline void phy_update_wifi_mac_time(bool en_clock_stopped, int64_t now)
{
static uint32_t s_common_clock_disable_time = 0;
if (en_clock_stopped) {
s_common_clock_disable_time = (uint32_t)now;
}{...} else {
if (s_common_clock_disable_time) {
uint32_t diff = (uint64_t)now - s_common_clock_disable_time;
if (s_wifi_mac_time_update_cb) {
s_wifi_mac_time_update_cb(diff);
}{...}
s_common_clock_disable_time = 0;
}{...}
}{...}
}{ ... }
#endif/* ... */
IRAM_ATTR void esp_phy_common_clock_enable(void)
{
wifi_bt_common_module_enable();
}{ ... }
IRAM_ATTR void esp_phy_common_clock_disable(void)
{
wifi_bt_common_module_disable();
}{ ... }
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
static inline void phy_digital_regs_store(void)
{
if (s_phy_digital_regs_mem != NULL) {
phy_dig_reg_backup(true, s_phy_digital_regs_mem);
s_is_phy_reg_stored = true;
}{...}
}{...}
static inline void phy_digital_regs_load(void)
{
if (s_is_phy_reg_stored && s_phy_digital_regs_mem != NULL) {
phy_dig_reg_backup(false, s_phy_digital_regs_mem);
}{...}
}{...}
/* ... */#endif
void esp_phy_enable(esp_phy_modem_t modem)
{
_lock_acquire(&s_phy_access_lock);
if (phy_get_modem_flag() == 0) {
#if CONFIG_IDF_TARGET_ESP32
s_phy_rf_en_ts = esp_timer_get_time();
phy_update_wifi_mac_time(false, s_phy_rf_en_ts);/* ... */
#endif
esp_phy_common_clock_enable();
if (s_is_phy_calibrated == false) {
esp_phy_load_cal_and_init();
s_is_phy_calibrated = true;
}{...} else {
#if SOC_PM_SUPPORT_PMU_MODEM_STATE && CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
extern bool pm_mac_modem_rf_already_enabled(void);
if (!pm_mac_modem_rf_already_enabled()) {
if (sleep_modem_wifi_modem_state_enabled() && sleep_modem_wifi_modem_link_done()) {
sleep_modem_wifi_do_phy_retention(true);
}{...} else {
phy_wakeup_init();
}{...}
}{...} else {
phy_wakeup_from_modem_state_extra_init();
}{...}
#else/* ... */
phy_wakeup_init();
#endif
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
phy_digital_regs_load();
#endif
#if CONFIG_ESP_PHY_IMPROVE_RX_11B
phy_improve_rx_special(true);
#endif
}{...}
#if CONFIG_IDF_TARGET_ESP32
coex_bt_high_prio();
#endif
#if !CONFIG_IDF_TARGET_ESP32
phy_track_pll_init();
#endif
if (phy_ant_need_update()) {
phy_ant_update();
phy_ant_clr_update_flag();
}{...}
}{...}
phy_set_modem_flag(modem);
#if !CONFIG_IDF_TARGET_ESP32
phy_track_pll();/* ... */
#endif
#if CONFIG_ESP_PHY_RECORD_USED_TIME
phy_record_time(true, modem);
#endif
_lock_release(&s_phy_access_lock);
}{ ... }
void esp_phy_disable(esp_phy_modem_t modem)
{
_lock_acquire(&s_phy_access_lock);
#if CONFIG_ESP_PHY_RECORD_USED_TIME
phy_record_time(false, modem);
#endif
phy_clr_modem_flag(modem);
if (phy_get_modem_flag() == 0) {
#if !CONFIG_IDF_TARGET_ESP32
phy_track_pll_deinit();
#endif
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
phy_digital_regs_store();
#endif
#if SOC_PM_SUPPORT_PMU_MODEM_STATE && CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
extern void pm_mac_modem_clear_rf_power_state(void);
pm_mac_modem_clear_rf_power_state();
if (sleep_modem_wifi_modem_state_enabled()) {
sleep_modem_wifi_do_phy_retention(false);
}{...} else
#endif
{
phy_close_rf();
#if !CONFIG_IDF_TARGET_ESP32
phy_xpd_tsens();/* ... */
#endif
}{...}
#if CONFIG_IDF_TARGET_ESP32
phy_update_wifi_mac_time(true, esp_timer_get_time());/* ... */
#endif
esp_phy_common_clock_disable();
}{...}
_lock_release(&s_phy_access_lock);
}{ ... }
void IRAM_ATTR esp_wifi_bt_power_domain_on(void)
{
#if SOC_PM_SUPPORT_MODEM_PD || SOC_PM_SUPPORT_WIFI_PD
#if SOC_PM_MODEM_PD_BY_SW
_lock_acquire(&s_wifi_bt_pd_controller.lock);
if (s_wifi_bt_pd_controller.count++ == 0) {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_FORCE_PD);
esp_rom_delay_us(10);
wifi_bt_common_module_enable();
#if CONFIG_IDF_TARGET_ESP32
DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG, MODEM_RESET_FIELD_WHEN_PU);
DPORT_CLEAR_PERI_REG_MASK(DPORT_CORE_RST_EN_REG, MODEM_RESET_FIELD_WHEN_PU);/* ... */
#else
SET_PERI_REG_MASK(SYSCON_WIFI_RST_EN_REG, MODEM_RESET_FIELD_WHEN_PU);
CLEAR_PERI_REG_MASK(SYSCON_WIFI_RST_EN_REG, MODEM_RESET_FIELD_WHEN_PU);/* ... */
#endif
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_WIFI_FORCE_ISO);
wifi_bt_common_module_disable();
}{...}
_lock_release(&s_wifi_bt_pd_controller.lock);/* ... */
#endif /* ... */
#endif
}{ ... }
void esp_wifi_bt_power_domain_off(void)
{
#if SOC_PM_SUPPORT_MODEM_PD || SOC_PM_SUPPORT_WIFI_PD
#if SOC_PM_MODEM_PD_BY_SW
_lock_acquire(&s_wifi_bt_pd_controller.lock);
if (--s_wifi_bt_pd_controller.count == 0) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_WIFI_FORCE_ISO);
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_FORCE_PD);
}{...}
_lock_release(&s_wifi_bt_pd_controller.lock);/* ... */
#endif /* ... */
#endif
}{ ... }
void esp_phy_modem_init(void)
{
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA || CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
_lock_acquire(&s_phy_access_lock);
s_phy_modem_init_ref++;
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
if (s_phy_digital_regs_mem == NULL) {
s_phy_digital_regs_mem = (uint32_t *)heap_caps_malloc(SOC_PHY_DIG_REGS_MEM_SIZE, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
}{...}
#endif/* ... */
#if SOC_PM_SUPPORT_PMU_MODEM_STATE && CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
sleep_modem_wifi_modem_state_init();
#endif
_lock_release(&s_phy_access_lock);/* ... */
#endif
}{ ... }
void esp_phy_modem_deinit(void)
{
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA || CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
_lock_acquire(&s_phy_access_lock);
s_phy_modem_init_ref--;
if (s_phy_modem_init_ref == 0) {
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
s_is_phy_reg_stored = false;
free(s_phy_digital_regs_mem);
s_phy_digital_regs_mem = NULL;
/* ... */
#if CONFIG_IDF_TARGET_ESP32C3
phy_init_flag();
#endif /* ... */
#endif
#if SOC_PM_SUPPORT_PMU_MODEM_STATE && CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
sleep_modem_wifi_modem_state_deinit();
#endif
}{...}
_lock_release(&s_phy_access_lock);/* ... */
#endif
}{ ... }
#if CONFIG_MAC_BB_PD
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
static uint32_t* s_mac_bb_pd_mem = NULL;
static uint8_t s_macbb_backup_mem_ref = 0;
static bool s_mac_bb_pu = true;/* ... */
#endif
void esp_mac_bb_pd_mem_init(void)
{
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
_lock_acquire(&s_phy_access_lock);
s_macbb_backup_mem_ref++;
if (s_mac_bb_pd_mem == NULL) {
s_mac_bb_pd_mem = (uint32_t *)heap_caps_malloc(SOC_MAC_BB_PD_MEM_SIZE, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
}{...}
_lock_release(&s_phy_access_lock);/* ... */
#elif SOC_PM_MODEM_RETENTION_BY_REGDMA
esp_phy_sleep_data_init();
#endif
}{...}
void esp_mac_bb_pd_mem_deinit(void)
{
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
_lock_acquire(&s_phy_access_lock);
s_macbb_backup_mem_ref--;
if (s_macbb_backup_mem_ref == 0) {
free(s_mac_bb_pd_mem);
s_mac_bb_pd_mem = NULL;
}{...}
_lock_release(&s_phy_access_lock);/* ... */
#elif SOC_PM_MODEM_RETENTION_BY_REGDMA
esp_phy_sleep_data_deinit();
#endif
}{...}
IRAM_ATTR void esp_mac_bb_power_up(void)
{
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
if (s_mac_bb_pd_mem == NULL) {
return;
}{...}
/* ... */#endif
esp_wifi_bt_power_domain_on();
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
if (!s_mac_bb_pu) {
esp_phy_common_clock_enable();
phy_freq_mem_backup(false, s_mac_bb_pd_mem);
esp_phy_common_clock_disable();
s_mac_bb_pu = true;
}{...}
/* ... */#endif
}{...}
IRAM_ATTR void esp_mac_bb_power_down(void)
{
#if SOC_PM_MODEM_RETENTION_BY_BACKUPDMA
if (s_mac_bb_pd_mem == NULL) {
return;
}{...}
if (s_mac_bb_pu) {
esp_phy_common_clock_enable();
phy_freq_mem_backup(true, s_mac_bb_pd_mem);
esp_phy_common_clock_disable();
s_mac_bb_pu = false;
}{...}
/* ... */#endif
esp_wifi_bt_power_domain_off();
}{...}
/* ... */#endif
#if CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION
const esp_phy_init_data_t* esp_phy_get_init_data(void)
{
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN_EMBED
size_t init_data_store_length = PHY_INIT_MAGIC_LEN +
sizeof(esp_phy_init_data_t) + PHY_INIT_MAGIC_LEN;
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for updated country code PHY init data");
return NULL;
}{...}
memcpy(init_data_store, multi_phy_init_data_bin_start, init_data_store_length);
ESP_LOGI(TAG, "loading embedded multiple PHY init data");/* ... */
#else
const esp_partition_t* partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "PHY data partition not found");
return NULL;
}{...}
ESP_LOGD(TAG, "loading PHY init data from partition at offset 0x%" PRIx32 "", partition->address);
size_t init_data_store_length = PHY_INIT_MAGIC_LEN +
sizeof(esp_phy_init_data_t) + PHY_INIT_MAGIC_LEN;
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for PHY init data");
return NULL;
}{...}
esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to read PHY data partition (0x%x)", err);
free(init_data_store);
return NULL;
}{...}
/* ... */#endif
if (memcmp(init_data_store, PHY_INIT_MAGIC, PHY_INIT_MAGIC_LEN) != 0 ||
memcmp(init_data_store + init_data_store_length - PHY_INIT_MAGIC_LEN,
PHY_INIT_MAGIC, PHY_INIT_MAGIC_LEN) != 0) {
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN_EMBED
ESP_LOGE(TAG, "failed to validate embedded PHY init data");
free(init_data_store);
return NULL;/* ... */
#else
#ifndef CONFIG_ESP_PHY_DEFAULT_INIT_IF_INVALID
ESP_LOGE(TAG, "failed to validate PHY data partition");
free(init_data_store);
return NULL;/* ... */
#else
ESP_LOGE(TAG, "failed to validate PHY data partition, restoring default data into flash...");
memcpy(init_data_store,
PHY_INIT_MAGIC, PHY_INIT_MAGIC_LEN);
memcpy(init_data_store + PHY_INIT_MAGIC_LEN,
&phy_init_data, sizeof(phy_init_data));
memcpy(init_data_store + PHY_INIT_MAGIC_LEN + sizeof(phy_init_data),
PHY_INIT_MAGIC, PHY_INIT_MAGIC_LEN);
assert(memcmp(init_data_store, PHY_INIT_MAGIC, PHY_INIT_MAGIC_LEN) == 0);
assert(memcmp(init_data_store + init_data_store_length - PHY_INIT_MAGIC_LEN,
PHY_INIT_MAGIC, PHY_INIT_MAGIC_LEN) == 0);
err = esp_partition_write(partition, 0, init_data_store, init_data_store_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to write default PHY data partition (0x%x)", err);
free(init_data_store);
return NULL;
}{...}
/* ... */#endif /* ... */
#endif
}{...}
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN
if ((*(init_data_store + (PHY_INIT_MAGIC_LEN + PHY_SUPPORT_MULTIPLE_BIN_OFFSET)))) {
s_multiple_phy_init_data_bin = true;
ESP_LOGI(TAG, "Support multiple PHY init data bins");
}{...} else {
ESP_LOGW(TAG, "Does not support multiple PHY init data bins");
}{...}
/* ... */#endif
ESP_LOGD(TAG, "PHY data partition validated");
return (const esp_phy_init_data_t*) (init_data_store + PHY_INIT_MAGIC_LEN);
}{...}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
{
free((uint8_t*) init_data - PHY_INIT_MAGIC_LEN);
}{...}
/* ... */
#else
const esp_phy_init_data_t* esp_phy_get_init_data(void)
{
ESP_LOGD(TAG, "loading PHY init data from application binary");
return &phy_init_data;
}{ ... }
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
{
}{ ... }
#endif/* ... */
static const char* PHY_NAMESPACE = "phy";
static const char* PHY_CAL_VERSION_KEY = "cal_version";
static const char* PHY_CAL_MAC_KEY = "cal_mac";
static const char* PHY_CAL_DATA_KEY = "cal_data";
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle_t handle,
esp_phy_calibration_data_t* out_cal_data);
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle,
const esp_phy_calibration_data_t* cal_data);
esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data)
{
nvs_handle_t handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READONLY, &handle);
if (err == ESP_ERR_NVS_NOT_INITIALIZED) {
ESP_LOGE(TAG, "%s: NVS has not been initialized. "
"Call nvs_flash_init before starting WiFi/BT.", __func__);
return err;
}{...} else if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
return err;
}{...}
err = load_cal_data_from_nvs_handle(handle, out_cal_data);
nvs_close(handle);
return err;
}{ ... }
esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data)
{
nvs_handle_t handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
return err;
}{...}
else {
err = store_cal_data_to_nvs_handle(handle, cal_data);
nvs_close(handle);
return err;
}{...}
}{ ... }
esp_err_t esp_phy_erase_cal_data_in_nvs(void)
{
nvs_handle_t handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to open NVS phy namespace (0x%x)", __func__, err);
return err;
}{...}
else {
err = nvs_erase_all(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to erase NVS phy namespace (0x%x)", __func__, err);
}{...}
else {
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to commit NVS phy namespace (0x%x)", __func__, err);
}{...}
}{...}
}{...}
nvs_close(handle);
return err;
}{ ... }
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle_t handle,
esp_phy_calibration_data_t* out_cal_data)
{
esp_err_t err;
uint32_t cal_data_version;
err = nvs_get_u32(handle, PHY_CAL_VERSION_KEY, &cal_data_version);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_version (0x%x)", __func__, err);
return err;
}{...}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %" PRId32, cal_format_version);
if (cal_data_version != cal_format_version) {
ESP_LOGD(TAG, "%s: expected calibration data format %" PRId32 ", found %" PRId32 "",
__func__, cal_format_version, cal_data_version);
return ESP_FAIL;
}{...}
uint8_t cal_data_mac[6];
size_t length = sizeof(cal_data_mac);
err = nvs_get_blob(handle, PHY_CAL_MAC_KEY, cal_data_mac, &length);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_mac (0x%x)", __func__, err);
return err;
}{...}
if (length != sizeof(cal_data_mac)) {
ESP_LOGD(TAG, "%s: invalid length of cal_mac (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}{...}
uint8_t sta_mac[6];
ESP_ERROR_CHECK(esp_efuse_mac_get_default(sta_mac));
if (memcmp(sta_mac, cal_data_mac, sizeof(sta_mac)) != 0) {
ESP_LOGE(TAG, "%s: calibration data MAC check failed: expected " \
MACSTR ", found " MACSTR,
__func__, MAC2STR(sta_mac), MAC2STR(cal_data_mac));
return ESP_FAIL;
}{...}
length = sizeof(*out_cal_data);
err = nvs_get_blob(handle, PHY_CAL_DATA_KEY, out_cal_data, &length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to get cal_data(0x%x)", __func__, err);
return err;
}{...}
if (length != sizeof(*out_cal_data)) {
ESP_LOGD(TAG, "%s: invalid length of cal_data (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}{...}
return ESP_OK;
}{ ... }
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle,
const esp_phy_calibration_data_t* cal_data)
{
esp_err_t err;
err = nvs_set_blob(handle, PHY_CAL_DATA_KEY, cal_data, sizeof(*cal_data));
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration data failed(0x%x)", __func__, err);
return err;
}{...}
uint8_t sta_mac[6];
ESP_ERROR_CHECK(esp_efuse_mac_get_default(sta_mac));
err = nvs_set_blob(handle, PHY_CAL_MAC_KEY, sta_mac, sizeof(sta_mac));
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration mac failed(0x%x)", __func__, err);
return err;
}{...}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %" PRId32 "", cal_format_version);
err = nvs_set_u32(handle, PHY_CAL_VERSION_KEY, cal_format_version);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration version failed(0x%x)", __func__, err);
return err;
}{...}
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration nvs commit failed(0x%x)", __func__, err);
}{...}
return err;
}{ ... }
#if CONFIG_ESP_PHY_REDUCE_TX_POWER
static void __attribute((unused)) esp_phy_reduce_tx_power(esp_phy_init_data_t* init_data)
{
uint8_t i;
for(i = 0; i < PHY_TX_POWER_NUM; i++) {
init_data->params[PHY_TX_POWER_OFFSET+i] = PHY_TX_POWER_LOWEST;
}{...}
}{...}
/* ... */#endif
void esp_phy_load_cal_and_init(void)
{
char * phy_version = get_phy_version_str();
ESP_LOGI(TAG, "phy_version %s", phy_version);
#if CONFIG_IDF_TARGET_ESP32S2
phy_eco_version_sel(efuse_hal_chip_revision() / 100);
#endif
#if SOC_PHY_COMBO_MODULE
phy_init_param_set(1);
#endif
esp_phy_calibration_data_t* cal_data =
(esp_phy_calibration_data_t*) calloc(1, sizeof(esp_phy_calibration_data_t));
if (cal_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for RF calibration data");
abort();
}{...}
#if CONFIG_ESP_PHY_REDUCE_TX_POWER
const esp_phy_init_data_t* phy_init_data = esp_phy_get_init_data();
if (phy_init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}{...}
esp_phy_init_data_t* init_data = (esp_phy_init_data_t*) malloc(sizeof(esp_phy_init_data_t));
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for phy init data");
abort();
}{...}
memcpy(init_data, phy_init_data, sizeof(esp_phy_init_data_t));
if (esp_reset_reason() == ESP_RST_BROWNOUT) {
esp_phy_reduce_tx_power(init_data);
}{...}
#else/* ... */
const esp_phy_init_data_t* init_data = esp_phy_get_init_data();
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}{...}
/* ... */#endif
#if CONFIG_ESP_PHY_ENABLE_USB
phy_bbpll_en_usb(true);
#endif
#ifdef CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE
esp_phy_calibration_mode_t calibration_mode = CONFIG_ESP_PHY_CALIBRATION_MODE;
uint8_t sta_mac[6];
if (esp_rom_get_reset_reason(0) == RESET_REASON_CORE_DEEP_SLEEP) {
calibration_mode = PHY_RF_CAL_NONE;
}{...}
esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data);
if (err != ESP_OK) {
ESP_LOGW(TAG, "failed to load RF calibration data (0x%x), falling back to full calibration", err);
calibration_mode = PHY_RF_CAL_FULL;
}{...}
ESP_ERROR_CHECK(esp_efuse_mac_get_default(sta_mac));
memcpy(cal_data->mac, sta_mac, 6);
esp_err_t ret = register_chipv7_phy(init_data, cal_data, calibration_mode);
if (ret == ESP_CAL_DATA_CHECK_FAIL) {
ESP_LOGI(TAG, "Saving new calibration data due to checksum failure or outdated calibration data, mode(%d)", calibration_mode);
}{...}
if ((calibration_mode != PHY_RF_CAL_NONE) && ((err != ESP_OK) || (ret == ESP_CAL_DATA_CHECK_FAIL))) {
err = esp_phy_store_cal_data_to_nvs(cal_data);
}{...} else {
err = ESP_OK;
}{...}
/* ... */#else
register_chipv7_phy(init_data, cal_data, PHY_RF_CAL_FULL);
#endif
#if CONFIG_ESP_PHY_IMPROVE_RX_11B
ESP_LOGW(TAG, "PHY enable improve rx 11b");
phy_improve_rx_special(true);/* ... */
#endif
#if CONFIG_ESP_PHY_REDUCE_TX_POWER
esp_phy_release_init_data(phy_init_data);
free(init_data);/* ... */
#else
esp_phy_release_init_data(init_data);
#endif
#if CONFIG_ESP_PHY_ENABLED && SOC_DEEP_SLEEP_SUPPORTED
ESP_ERROR_CHECK(esp_deep_sleep_register_phy_hook(&phy_close_rf));
#endif
#if !CONFIG_IDF_TARGET_ESP32
#if CONFIG_ESP_PHY_ENABLED && SOC_DEEP_SLEEP_SUPPORTED
ESP_ERROR_CHECK(esp_deep_sleep_register_phy_hook(&phy_xpd_tsens));
#endif/* ... */
#endif
free(cal_data);
}{ ... }
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN
static esp_err_t phy_crc_check_init_data(uint8_t* init_data, const uint8_t* checksum, size_t init_data_length)
{
uint32_t crc_data = 0;
crc_data = esp_rom_crc32_le(crc_data, init_data, init_data_length);
uint32_t crc_size_conversion = htobe32(crc_data);
if (crc_size_conversion != *(uint32_t*)(checksum)) {
return ESP_FAIL;
}{...}
return ESP_OK;
}{...}
static uint8_t phy_find_bin_type_according_country(const char* country)
{
uint32_t i = 0;
uint8_t phy_init_data_type = 0;
for (i = 0; i < sizeof(s_country_code_map_type_table)/sizeof(phy_country_to_bin_type_t); i++)
{
if (!memcmp(country, s_country_code_map_type_table[i].cc, sizeof(s_phy_current_country))) {
phy_init_data_type = s_country_code_map_type_table[i].type;
ESP_LOGD(TAG, "Current country is %c%c, PHY init data type is %s", s_country_code_map_type_table[i].cc[0],
s_country_code_map_type_table[i].cc[1], s_phy_type[s_country_code_map_type_table[i].type]);
break;
}{...}
}{...}
if (i == sizeof(s_country_code_map_type_table)/sizeof(phy_country_to_bin_type_t)) {
phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
ESP_LOGW(TAG, "Use the default certification code because %c%c doesn't have a certificate", country[0], country[1]);
}{...}
return phy_init_data_type;
}{...}
static esp_err_t phy_find_bin_data_according_type(uint8_t* out_init_data_store,
const phy_control_info_data_t* init_data_control_info,
const uint8_t* init_data_multiple,
phy_init_data_type_t init_data_type)
{
int i = 0;
for (i = 0; i < init_data_control_info->number; i++) {
if (init_data_type == *(init_data_multiple + (i * sizeof(esp_phy_init_data_t)) + PHY_INIT_DATA_TYPE_OFFSET)) {
memcpy(out_init_data_store + PHY_INIT_MAGIC_LEN,
init_data_multiple + (i * sizeof(esp_phy_init_data_t)), sizeof(esp_phy_init_data_t));
break;
}{...}
}{...}
if (i == init_data_control_info->number) {
return ESP_FAIL;
}{...}
return ESP_OK;
}{...}
static esp_err_t phy_get_multiple_init_data(const esp_partition_t* partition,
uint8_t* init_data_store,
size_t init_data_store_length,
phy_init_data_type_t init_data_type)
{
phy_control_info_data_t* init_data_control_info = (phy_control_info_data_t*) malloc(sizeof(phy_control_info_data_t));
if (init_data_control_info == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for PHY init data control info");
return ESP_FAIL;
}{...}
esp_err_t err = ESP_OK;
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN_EMBED
memcpy(init_data_control_info, multi_phy_init_data_bin_start + init_data_store_length, sizeof(phy_control_info_data_t));
#else
err = esp_partition_read(partition, init_data_store_length, init_data_control_info, sizeof(phy_control_info_data_t));
if (err != ESP_OK) {
free(init_data_control_info);
ESP_LOGE(TAG, "failed to read PHY control info data partition (0x%x)", err);
return ESP_FAIL;
}{...}
/* ... */#endif
if ((init_data_control_info->check_algorithm) == PHY_CRC_ALGORITHM) {
err = phy_crc_check_init_data(init_data_control_info->multiple_bin_checksum, init_data_control_info->control_info_checksum,
sizeof(phy_control_info_data_t) - sizeof(init_data_control_info->control_info_checksum));
if (err != ESP_OK) {
free(init_data_control_info);
ESP_LOGE(TAG, "PHY init data control info check error");
return ESP_FAIL;
}{...}
}{...} else {
free(init_data_control_info);
ESP_LOGE(TAG, "Check algorithm not CRC, PHY init data update failed");
return ESP_FAIL;
}{...}
uint8_t* init_data_multiple = (uint8_t*) malloc(sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (init_data_multiple == NULL) {
free(init_data_control_info);
ESP_LOGE(TAG, "failed to allocate memory for PHY init data multiple bin");
return ESP_FAIL;
}{...}
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN_EMBED
memcpy(init_data_multiple, multi_phy_init_data_bin_start + init_data_store_length + sizeof(phy_control_info_data_t), sizeof(esp_phy_init_data_t) * init_data_control_info->number);
#else
err = esp_partition_read(partition, init_data_store_length + sizeof(phy_control_info_data_t),
init_data_multiple, sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (err != ESP_OK) {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "failed to read PHY init data multiple bin partition (0x%x)", err);
return ESP_FAIL;
}{...}
/* ... */#endif
if ((init_data_control_info->check_algorithm) == PHY_CRC_ALGORITHM) {
err = phy_crc_check_init_data(init_data_multiple, init_data_control_info->multiple_bin_checksum,
sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (err != ESP_OK) {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "PHY init data multiple bin check error");
return ESP_FAIL;
}{...}
}{...} else {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "Check algorithm not CRC, PHY init data update failed");
return ESP_FAIL;
}{...}
err = phy_find_bin_data_according_type(init_data_store, init_data_control_info, init_data_multiple, init_data_type);
if (err != ESP_OK) {
ESP_LOGW(TAG, "%s has not been certified, use DEFAULT PHY init data", s_phy_type[init_data_type]);
s_phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
}{...} else {
s_phy_init_data_type = init_data_type;
}{...}
free(init_data_multiple);
free(init_data_control_info);
return ESP_OK;
}{...}
esp_err_t esp_phy_update_init_data(phy_init_data_type_t init_data_type)
{
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN_EMBED
esp_err_t err = ESP_OK;
const esp_partition_t* partition = NULL;
size_t init_data_store_length = PHY_INIT_MAGIC_LEN +
sizeof(esp_phy_init_data_t) + PHY_INIT_MAGIC_LEN;
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for updated country code PHY init data");
return ESP_ERR_NO_MEM;
}{...}
memcpy(init_data_store, multi_phy_init_data_bin_start, init_data_store_length);
ESP_LOGI(TAG, "load embedded multi phy init data");/* ... */
#else
const esp_partition_t* partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "Updated country code PHY data partition not found");
return ESP_FAIL;
}{...}
size_t init_data_store_length = PHY_INIT_MAGIC_LEN +
sizeof(esp_phy_init_data_t) + PHY_INIT_MAGIC_LEN;
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for updated country code PHY init data");
return ESP_ERR_NO_MEM;
}{...}
esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
if (err != ESP_OK) {
free(init_data_store);
ESP_LOGE(TAG, "failed to read updated country code PHY data partition (0x%x)", err);
return ESP_FAIL;
}{...}
/* ... */#endif
if (memcmp(init_data_store, PHY_INIT_MAGIC, PHY_INIT_MAGIC_LEN) != 0 ||
memcmp(init_data_store + init_data_store_length - PHY_INIT_MAGIC_LEN,
PHY_INIT_MAGIC, PHY_INIT_MAGIC_LEN) != 0) {
free(init_data_store);
ESP_LOGE(TAG, "failed to validate updated country code PHY data partition");
return ESP_FAIL;
}{...}
if (init_data_type != ESP_PHY_INIT_DATA_TYPE_DEFAULT) {
err = phy_get_multiple_init_data(partition, init_data_store, init_data_store_length, init_data_type);
if (err != ESP_OK) {
free(init_data_store);
#if CONFIG_ESP_PHY_INIT_DATA_ERROR
abort();
#else
return ESP_FAIL;
#endif
}{...}
}{...} else {
s_phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
}{...}
if (s_current_apply_phy_init_data != s_phy_init_data_type) {
err = esp_phy_apply_phy_init_data(init_data_store + PHY_INIT_MAGIC_LEN);
if (err != ESP_OK) {
ESP_LOGE(TAG, "PHY init data failed to load");
free(init_data_store);
return ESP_FAIL;
}{...}
ESP_LOGI(TAG, "PHY init data type updated from %s to %s",
s_phy_type[s_current_apply_phy_init_data], s_phy_type[s_phy_init_data_type]);
s_current_apply_phy_init_data = s_phy_init_data_type;
}{...}
free(init_data_store);
return ESP_OK;
}{...}
/* ... */#endif
esp_err_t esp_phy_update_country_info(const char *country)
{
#if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN
uint8_t phy_init_data_type_map = 0;
if (!s_multiple_phy_init_data_bin) {
ESP_LOGD(TAG, "Does not support multiple PHY init data bins");
return ESP_FAIL;
}{...}
if (!memcmp(country, s_phy_current_country, sizeof(s_phy_current_country))) {
return ESP_OK;
}{...}
memcpy(s_phy_current_country, country, sizeof(s_phy_current_country));
phy_init_data_type_map = phy_find_bin_type_according_country(country);
if (phy_init_data_type_map == s_phy_init_data_type) {
return ESP_OK;
}{...}
esp_err_t err = esp_phy_update_init_data(phy_init_data_type_map);
if (err != ESP_OK) {
return err;
}{...}
#endif/* ... */
return ESP_OK;
}{ ... }
void esp_wifi_power_domain_on(void) __attribute__((alias("esp_wifi_bt_power_domain_on")));
void esp_wifi_power_domain_off(void) __attribute__((alias("esp_wifi_bt_power_domain_off")));
_lock_t phy_get_lock(void)
{
return s_phy_access_lock;
}{ ... }