Select one of the symbols to view example projects that use it.
 
Outline
#include <string.h>
#include "soc/soc_memory_layout.h"
#include "soc/gpio_periph.h"
#include "soc/soc_caps.h"
#include "soc/sdio_slave_periph.h"
#include "esp_cpu.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "hal/sdio_slave_hal.h"
#include "hal/gpio_hal.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/sleep_retention.h"
#include "driver/gpio.h"
#include "driver/sdio_slave.h"
TAG
#define SDIO_SLAVE_LOGE
#define SDIO_SLAVE_LOGW
#define SDIO_SLAVE_RCC_ATOMIC
#define SDIO_SLAVE_RCC_ATOMIC
recv_desc_s
recv_tailq_head_s
sdio_context_t
context
show_ll(sdio_slave_ll_desc_t *)
dump_ll(sdio_slave_ll_desc_t *)
deinit_context()
init_context(const sdio_slave_config_t *)
configure_pin(int, uint32_t, bool)
sdio_slave_hw_init(sdio_slave_config_t *)
recover_pin(int, int)
sdio_slave_hw_deinit()
sdio_slave_initialize(sdio_slave_config_t *)
sdio_slave_deinit()
sdio_slave_start()
sdio_slave_reset()
sdio_slave_stop()
sdio_intr(void *)
sdio_intr_host(void *)
sdio_slave_wait_int(int, TickType_t)
sdio_slave_read_reg(int)
sdio_slave_write_reg(int, uint8_t)
sdio_slave_get_host_intena()
sdio_slave_set_host_intena(sdio_slave_hostint_t)
sdio_slave_clear_host_int(sdio_slave_hostint_t)
get_hostint_by_pos(int)
sdio_slave_send_host_int(uint8_t)
sdio_intr_send(void *)
sdio_slave_send_queue(uint8_t *, size_t, void *, TickType_t)
sdio_slave_send_get_finished(void **, TickType_t)
sdio_slave_transmit(uint8_t *, size_t)
send_flush_data()
critical_enter_recv()
critical_exit_recv()
recv_flush_data()
sdio_intr_recv(void *)
sdio_slave_recv_load_buf(sdio_slave_buf_handle_t)
sdio_slave_recv_register_buf(uint8_t *)
sdio_slave_recv(sdio_slave_buf_handle_t *, uint8_t **, size_t *, TickType_t)
sdio_slave_recv_packet(sdio_slave_buf_handle_t *, TickType_t)
sdio_slave_recv_unregister_buf(sdio_slave_buf_handle_t)
sdio_slave_recv_get_buf(sdio_slave_buf_handle_t, size_t *)
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/esp_driver_sdio/src/sdio_slave.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 *//* ... */ /* Architecture: The whole SDIO slave peripheral consists of three parts: the registers (including the control registers of interrupts and shared registers), the sending FIFO and the receiving FIFO. A document ``esp_slave_protocol.rst`` describes the functionality of the peripheral detailedly. The host can access only one of those parts at once, and the hardware functions of these parts are totally independent. Hence this driver is designed into these three independent parts. The shared registers are quite simple. As well as the interrupts: when a slave interrupt is written by the host, the slave gets an interrupt; when one of the host interrupt bits is active, slave hardware output interrupt signals on the DAT1 line. For the FIFOs, the peripheral provides counters as registers so that the host can always know whether the slave is ready to send/receive data. The driver resets the counters during initialization, and the host should somehow inform the slave to reset the counters again if it should reboot (or lose the counter value for some reasons). Then the host can read/write the FIFOs by CMD53 commands according to the counters. Since we don't want to copy all the data from the buffer each time we use sending/receiving buffer, the buffers are directly loaded onto the sending/receiving linked-list and taken off only after use. Hence the driver takes ownership of the buffer when the buffer is fed to the driver. The driver returns the ownership of buffers when a "finish" function is called. When the hardware finishes the sending/receiving of a buffer, the ISR is invoked and it goes through the linked-list to see how many buffers are freed after last interrupt, and send corresponding signals to the app. The driver of FIFOs works as below: 1. The receive driver requires application to "register" a buffer before it's used. The driver dynamically allocate a linked-list descriptor for the buffer, and return the descriptor as a handle to the app. Each time the app asks to receive by a buffer, the descriptor of the buffer is loaded onto the linked-list, and the counter of receiving buffers is increased so that the host will know this by the receiving interrupt. The hardware will automatically go through the linked list and write data into the buffers loaded on the list. The receiving driver sends a counting semaphore to the app for each buffer finished receiving. A task can only check the linked list and fetch one finished buffer for a received semaphore. 2. The sending driver is slightly different due to different hardware working styles. (See README.md in the same folder for the diagram how task and ISR work concurrently) (TODO: re-write this part if the stitch mode is released) The hardware has a cache, so that once a descriptor is loaded onto the linked-list, it cannot be modified until returned (used) by the hardware. This forbids us from loading descriptors onto the linked list during the transfer (or the time waiting for host to start a transfer). However, we use a "ringbuffer" (different from the one in ``freertos/`` folder) holding descriptors to solve this: 1. The driver allocates continuous memory for several buffer descriptors (the maximum buffer number) during initialization. Then the driver points the STAILQ_NEXT pointer of all the descriptors except the last one to the next descriptor of each of them. Then the pointer of the last descriptor points back to the first one: now the descriptor is in a ring. 2. The "ringbuffer" has a write pointer points to where app can write new descriptor. The app writes the new descriptor indicated by the write pointer without touching the STAILQ_NEXT pointer so that the descriptors are always in a ring-like linked-list. The app never touches the part of linked-list being used by the hardware. 3. When the hardware needs some data to send, it automatically pick a part of connected descriptors. According to the mode: - Buffer mode: only pick the next one of the last sent one; - Stream mode: pick the one above to the latest one. The driver removes the STAILQ_NEXT pointer of the last descriptor and put the head of the part to the DMA controller so that it looks like just a linear linked-list rather than a ring to the hardware. 4. The counter of sending FIFO can increase when app load new buffers (in STREAM_MODE) or when new transfer should start (in PACKET_MODE). 5. When the sending transfer is finished, the driver goes through the descriptors just send in the ISR and push all the ``arg`` member of descriptors to the queue back to the app, so that the app can handle finished buffers. The driver also fix the STAILQ_NEXT pointer of the last descriptor so that the descriptors are now in a ring again. *//* ... */ #include <string.h> #include "soc/soc_memory_layout.h" #include "soc/gpio_periph.h" #include "soc/soc_caps.h" #include "soc/sdio_slave_periph.h" #include "esp_cpu.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "hal/sdio_slave_hal.h" #include "hal/gpio_hal.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "esp_private/periph_ctrl.h"13 includes #if CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP #include "esp_private/sleep_retention.h" #endif #include "driver/gpio.h" #include "driver/sdio_slave.h" #define SDIO_SLAVE_CHECK(res, str, ret_val) do { if(!(res)){\ SDIO_SLAVE_LOGE("%s", str);\ return ret_val;\ }{...} }{...}while (0)... static const char TAG[] = "sdio_slave"; #define SDIO_SLAVE_LOGE(s, ...) ESP_LOGE(TAG, "%s(%d): "s, __FUNCTION__,__LINE__,##__VA_ARGS__) #define SDIO_SLAVE_LOGW(s, ...) ESP_LOGW(TAG, "%s: "s, __FUNCTION__,##__VA_ARGS__) #if !SOC_RCC_IS_INDEPENDENT #define SDIO_SLAVE_RCC_ATOMIC() PERIPH_RCC_ATOMIC() #else #define SDIO_SLAVE_RCC_ATOMIC() #endif // sdio_slave_buf_handle_t is of type recv_desc_t*; typedef struct recv_desc_s { union { struct { // the third word, pointer to next desc, is shared with the tailq entry. sdio_slave_hal_recv_desc_t hal_desc; // when the forth word is used (not NULL), means the tailq is used, not in the receiving state. uint32_t not_receiving; }{ ... }; struct { // first 3 WORDs of this struct is defined by and compatible to the DMA link list format. uint32_t _reserved0; uint32_t _reserved1; TAILQ_ENTRY(recv_desc_s) tail_entry; // tailq used to store the registered descriptors. }{ ... }; }{ ... }; }{ ... } recv_desc_t; typedef TAILQ_HEAD(recv_tailq_head_s, recv_desc_s) recv_tailq_t; typedef struct { sdio_slave_config_t config; sdio_slave_context_t *hal; intr_handle_t intr_handle; //allocated interrupt handle /*------- events ---------------*/ union { SemaphoreHandle_t events[9]; // 0-7 for gp intr struct { SemaphoreHandle_t _events[8]; SemaphoreHandle_t recv_event; // 8 for recv }{ ... }; }{ ... }; portMUX_TYPE reg_spinlock;------- events /*------- sending ---------------*/ //desc in the send_link_list are temporary, taken information and space from the ringbuf, return to ringbuf after use. SemaphoreHandle_t remain_cnt; portMUX_TYPE write_spinlock; QueueHandle_t ret_queue;------- sending /*------- receiving ---------------*/ recv_tailq_t recv_reg_list; // removed from the link list, registered but not used now portMUX_TYPE recv_spinlock; }{ ... } sdio_context_t; #define CONTEXT_INIT_VAL { \ .intr_handle = NULL, \ .hal = NULL, \ /*------- events ---------------*/ \ .events = {}, \ .reg_spinlock = portMUX_INITIALIZER_UNLOCKED, \ /*------- sending ---------------*/ \ .ret_queue = NULL, \ .write_spinlock = portMUX_INITIALIZER_UNLOCKED, \ /*------- receiving ---------------*/ \ .recv_reg_list = TAILQ_HEAD_INITIALIZER(context.recv_reg_list), \ .recv_spinlock = portMUX_INITIALIZER_UNLOCKED, \ }{...} static sdio_context_t context = CONTEXT_INIT_VAL; static void sdio_intr(void *); static void sdio_intr_host(void *); static void sdio_intr_send(void *); static void sdio_intr_recv(void *); static esp_err_t send_flush_data(void); static esp_err_t recv_flush_data(void); static inline void critical_enter_recv(void); static inline void critical_exit_recv(void); static void deinit_context(void); static inline void show_ll(sdio_slave_ll_desc_t *item) { ESP_EARLY_LOGI(TAG, "=> %p: size: %d(%d), eof: %d, owner: %d", item, item->size, item->length, item->eof, item->owner); ESP_EARLY_LOGI(TAG, " buf: %p, stqe_next: %p", item->buf, item->qe.stqe_next); }{ ... } static void __attribute((unused)) dump_ll(sdio_slave_ll_desc_t *queue) { int cnt = 0; sdio_slave_ll_desc_t *item = queue; while (item != NULL) { cnt++; show_ll(item); item = STAILQ_NEXT(item, qe); }{...} ESP_EARLY_LOGI(TAG, "total: %d", cnt); }{ ... } static inline void deinit_context(void) { context.config = (sdio_slave_config_t) {}; for (int i = 0; i < 9; i++) { if (context.events[i] != NULL) { vSemaphoreDelete(context.events[i]); context.events[i] = NULL; }{...} }{...} if (context.ret_queue != NULL) { vQueueDelete(context.ret_queue); context.ret_queue = NULL; }{...} if (context.remain_cnt != NULL) { vSemaphoreDelete(context.remain_cnt); }{...} free(context.hal->send_desc_queue.data); context.hal->send_desc_queue.data = NULL; free(context.hal); context.hal = NULL; }{ ... } static esp_err_t init_context(const sdio_slave_config_t *config) { SDIO_SLAVE_CHECK(*(uint32_t *)&context.config == 0, "sdio slave already initialized", ESP_ERR_INVALID_STATE); context = (sdio_context_t)CONTEXT_INIT_VAL; context.config = *config; //initialize and configure the HAL context.hal = (sdio_slave_context_t *)heap_caps_calloc(sizeof(sdio_slave_context_t), 1, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (context.hal == NULL) { goto no_mem; }{...} context.hal->sending_mode = config->sending_mode; context.hal->timing = config->timing; context.hal->no_highspeed = (config->flags & SDIO_SLAVE_FLAG_DEFAULT_SPEED) == SDIO_SLAVE_FLAG_DEFAULT_SPEED; context.hal->send_queue_size = config->send_queue_size; context.hal->recv_buffer_size = config->recv_buffer_size; //initialize ringbuffer resources sdio_ringbuf_t *buf = &(context.hal->send_desc_queue); //one item is not used. buf->size = SDIO_SLAVE_SEND_DESC_SIZE * (config->send_queue_size + 1); buf->data = (uint8_t *)heap_caps_malloc(buf->size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA); if (buf->data == NULL) { goto no_mem; }{...} sdio_slave_hal_init(context.hal); // in theory we can queue infinite buffers in the linked list, but for multi-core reason we have to use a queue to // count the finished buffers. context.recv_event = xSemaphoreCreateCounting(UINT32_MAX, 0); for (int i = 0; i < 9; i++) { if (i < 8) { context.events[i] = xSemaphoreCreateBinary(); }{...} //for 8, already created. if (context.events[i] == NULL) { SDIO_SLAVE_LOGE("event initialize failed"); goto no_mem; }{...} }{...} context.remain_cnt = xSemaphoreCreateCounting(context.config.send_queue_size, context.config.send_queue_size); if (context.remain_cnt == NULL) { goto no_mem; }{...} context.ret_queue = xQueueCreate(config->send_queue_size, sizeof(void *)); if (context.ret_queue == NULL) { goto no_mem; }{...} return ESP_OK; no_mem: deinit_context(); return ESP_ERR_NO_MEM; }{ ... } static void configure_pin(int pin, uint32_t func, bool pullup) { const int sdmmc_func = func; const int drive_strength = 3; assert(pin != -1); uint32_t reg = GPIO_PIN_MUX_REG[pin]; assert(reg != UINT32_MAX); PIN_INPUT_ENABLE(reg); gpio_hal_iomux_func_sel(reg, sdmmc_func); PIN_SET_DRV(reg, drive_strength); gpio_pulldown_dis(pin); if (pullup) { gpio_pullup_en(pin); }{...} }{ ... } static inline esp_err_t sdio_slave_hw_init(sdio_slave_config_t *config) { //initialize pin const sdio_slave_slot_info_t *slot = &sdio_slave_slot_info[0]; bool pullup = config->flags & SDIO_SLAVE_FLAG_INTERNAL_PULLUP; configure_pin(slot->clk_gpio, slot->func, false); //clk doesn't need a pullup configure_pin(slot->cmd_gpio, slot->func, pullup); configure_pin(slot->d0_gpio, slot->func, pullup); if ((config->flags & SDIO_SLAVE_FLAG_HOST_INTR_DISABLED) == 0) { configure_pin(slot->d1_gpio, slot->func, pullup); }{...} if ((config->flags & SDIO_SLAVE_FLAG_DAT2_DISABLED) == 0) { configure_pin(slot->d2_gpio, slot->func, pullup); }{...} configure_pin(slot->d3_gpio, slot->func, pullup); //enable register clock SDIO_SLAVE_RCC_ATOMIC() { sdio_slave_ll_enable_bus_clock(true); sdio_slave_ll_reset_register(); }{...} sdio_slave_hal_hw_init(context.hal); return ESP_OK; }{ ... } static void recover_pin(int pin, int sdio_func) { uint32_t reg = GPIO_PIN_MUX_REG[pin]; assert(reg != UINT32_MAX); int func = REG_GET_FIELD(reg, MCU_SEL); if (func == sdio_func) { gpio_set_direction(pin, GPIO_MODE_INPUT); gpio_hal_iomux_func_sel(reg, PIN_FUNC_GPIO); }{...} }{ ... } static void sdio_slave_hw_deinit(void) { const sdio_slave_slot_info_t *slot = &sdio_slave_slot_info[0]; recover_pin(slot->clk_gpio, slot->func); recover_pin(slot->cmd_gpio, slot->func); recover_pin(slot->d0_gpio, slot->func); recover_pin(slot->d1_gpio, slot->func); recover_pin(slot->d2_gpio, slot->func); recover_pin(slot->d3_gpio, slot->func); //disable register clock SDIO_SLAVE_RCC_ATOMIC() { sdio_slave_ll_enable_bus_clock(false); }{...} }{ ... } esp_err_t sdio_slave_initialize(sdio_slave_config_t *config) { esp_err_t r; intr_handle_t intr_handle = NULL; const int flags = 0; r = esp_intr_alloc(ETS_SLC0_INTR_SOURCE, flags, sdio_intr, NULL, &intr_handle); if (r != ESP_OK) { return r; }{...} r = init_context(config); if (r != ESP_OK) { return r; }{...} context.intr_handle = intr_handle; #if CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP r = sleep_retention_power_lock_acquire(); if (r != ESP_OK) { return r; }{...} #endif/* ... */ r = sdio_slave_hw_init(config); if (r != ESP_OK) { return r; }{...} sdio_slave_reset(); return ESP_OK; }{ ... } void sdio_slave_deinit(void) { sdio_slave_hw_deinit(); #if CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP esp_err_t r = sleep_retention_power_lock_release(); assert(r == ESP_OK);/* ... */ #endif //unregister all buffers registered but returned (not loaded) recv_desc_t *temp_desc; recv_desc_t *desc; TAILQ_FOREACH_SAFE(desc, &context.recv_reg_list, tail_entry, temp_desc) { TAILQ_REMOVE(&context.recv_reg_list, desc, tail_entry); free(desc); }{...} //unregister all buffers that is loaded and not returned while (1) { desc = (recv_desc_t *)sdio_slave_hal_recv_unload_desc(context.hal); if (desc == NULL) { break; }{...} free(desc); }{...} esp_err_t ret = esp_intr_free(context.intr_handle); assert(ret == ESP_OK); (void)ret; context.intr_handle = NULL; deinit_context(); }{ ... } esp_err_t sdio_slave_start(void) { esp_err_t ret; sdio_slave_hostint_t intr = (sdio_slave_hostint_t)UINT32_MAX; sdio_slave_hal_hostint_clear(context.hal, &intr); ret = sdio_slave_hal_send_start(context.hal); if (ret != ESP_OK) { return ret; }{...} critical_enter_recv(); sdio_slave_hal_recv_start(context.hal); critical_exit_recv(); sdio_slave_hal_set_ioready(context.hal, true); return ESP_OK; }{ ... } esp_err_t sdio_slave_reset(void) { esp_err_t err; err = send_flush_data(); if (err != ESP_OK) { return err; }{...} err = sdio_slave_hal_send_reset_counter(context.hal); if (err != ESP_OK) { return err; }{...} err = recv_flush_data(); if (err != ESP_OK) { return err; }{...} critical_enter_recv(); sdio_slave_hal_recv_reset_counter(context.hal); critical_exit_recv(); err = ESP_OK; return err; }{ ... } void sdio_slave_stop(void) { sdio_slave_hal_set_ioready(context.hal, false); sdio_slave_hal_send_stop(context.hal); sdio_slave_hal_recv_stop(context.hal); }{ ... } static void sdio_intr(void *arg) { sdio_intr_send(arg); sdio_intr_recv(arg); sdio_intr_host(arg); }{ ... } /*--------------------------------------------------------------------------- * Host *--------------------------------------------------------------------------*//* ... */ static void sdio_intr_host(void *arg) { sdio_slave_ll_slvint_t int_val; sdio_slave_hal_slvint_fetch_clear(context.hal, &int_val); BaseType_t yield = pdFALSE; for (int i = 0; i < 8; i++) { if (BIT(i) & int_val) { if (context.config.event_cb != NULL) { (*context.config.event_cb)(i); }{...} xSemaphoreGiveFromISR(context.events[i], &yield); }{...} }{...} if (yield) { portYIELD_FROM_ISR(); }{...} }{ ... } esp_err_t sdio_slave_wait_int(int pos, TickType_t wait) { SDIO_SLAVE_CHECK(pos >= 0 && pos < 8, "interrupt num invalid", ESP_ERR_INVALID_ARG); return xSemaphoreTake(context.events[pos], wait); }{ ... } uint8_t sdio_slave_read_reg(int pos) { if (pos >= 28 && pos <= 31) { SDIO_SLAVE_LOGW("%s: interrupt reg, for reference", __FUNCTION__); }{...} if (pos < 0 || pos >= 64) { SDIO_SLAVE_LOGE("read register address wrong"); }{...} return sdio_slave_hal_host_get_reg(context.hal, pos); }{ ... } esp_err_t sdio_slave_write_reg(int pos, uint8_t reg) { if (pos >= 28 && pos <= 31) { SDIO_SLAVE_LOGE("interrupt reg, please use sdio_slave_clear_int"); return ESP_ERR_INVALID_ARG; }{...} if (pos < 0 || pos >= 64) { SDIO_SLAVE_LOGE("write register address wrong"); return ESP_ERR_INVALID_ARG; }{...} portENTER_CRITICAL(&context.reg_spinlock); sdio_slave_hal_host_set_reg(context.hal, pos, reg); portEXIT_CRITICAL(&context.reg_spinlock); return ESP_OK; }{ ... } sdio_slave_hostint_t sdio_slave_get_host_intena(void) { sdio_slave_hostint_t host_int; sdio_slave_hal_hostint_get_ena(context.hal, &host_int); return host_int; }{ ... } void sdio_slave_set_host_intena(sdio_slave_hostint_t mask) { sdio_slave_hal_hostint_set_ena(context.hal, &mask); }{ ... } void sdio_slave_clear_host_int(sdio_slave_hostint_t mask) { sdio_slave_hal_hostint_clear(context.hal, &mask); }{ ... } static inline sdio_slave_hostint_t get_hostint_by_pos(int pos) { return (sdio_slave_hostint_t)BIT(pos); }{ ... } esp_err_t sdio_slave_send_host_int(uint8_t pos) { SDIO_SLAVE_CHECK(pos < 8, "interrupt num invalid", ESP_ERR_INVALID_ARG); sdio_slave_hostint_t intr = get_hostint_by_pos(pos); sdio_slave_hal_hostint_send(context.hal, &intr); return ESP_OK; }{ ... } /*--------------------------------------------------------------------------- * Send *--------------------------------------------------------------------------*//* ... */ /* The link list is handled in the app, while counter and pointer processed in ISR. * Driver abuse rx_done bit to invoke ISR. * If driver is stopped, the link list is stopped as well as the ISR invoker. *//* ... */ static void sdio_intr_send(void *arg) { ESP_EARLY_LOGV(TAG, "intr_send"); BaseType_t yield = pdFALSE; // this interrupt is abused to get ISR invoked by app sdio_slave_hal_send_handle_isr_invoke(context.hal); uint32_t returned_cnt; if (sdio_slave_hal_send_eof_happened(context.hal)) { BaseType_t ret __attribute__((unused)); esp_err_t err; while (1) { void *finished_arg; err = sdio_slave_hal_send_get_next_finished_arg(context.hal, &finished_arg, &returned_cnt); if (err != ESP_OK) { break; }{...} assert(returned_cnt == 0); ESP_EARLY_LOGV(TAG, "end: %p", finished_arg); ret = xQueueSendFromISR(context.ret_queue, &finished_arg, &yield); assert(ret == pdTRUE); }{...} //get_next_finished_arg returns the total amount of returned descs. for (size_t i = 0; i < returned_cnt; i++) { ret = xSemaphoreGiveFromISR(context.remain_cnt, &yield); assert(ret == pdTRUE); }{...} }{...} sdio_slave_hal_send_new_packet_if_exist(context.hal); if (yield) { portYIELD_FROM_ISR(); }{...} }{ ... } esp_err_t sdio_slave_send_queue(uint8_t *addr, size_t len, void *arg, TickType_t wait) { SDIO_SLAVE_CHECK(len > 0, "len <= 0", ESP_ERR_INVALID_ARG); SDIO_SLAVE_CHECK(esp_ptr_dma_capable(addr) && (uint32_t)addr % 4 == 0, "buffer to send should be DMA capable and 32-bit aligned", ESP_ERR_INVALID_ARG); BaseType_t cnt_ret = xSemaphoreTake(context.remain_cnt, wait); if (cnt_ret != pdTRUE) { return ESP_ERR_TIMEOUT; }{...} portENTER_CRITICAL(&context.write_spinlock); esp_err_t ret = sdio_slave_hal_send_queue(context.hal, addr, len, arg); portEXIT_CRITICAL(&context.write_spinlock); if (ret != ESP_OK) { return ret; }{...} return ESP_OK; }{ ... } esp_err_t sdio_slave_send_get_finished(void **out_arg, TickType_t wait) { void *arg = NULL; BaseType_t err = xQueueReceive(context.ret_queue, &arg, wait); if (out_arg) { *out_arg = arg; }{...} if (err != pdTRUE) { return ESP_ERR_TIMEOUT; }{...} return ESP_OK; }{ ... } esp_err_t sdio_slave_transmit(uint8_t *addr, size_t len) { uint32_t timestamp = esp_cpu_get_cycle_count(); uint32_t ret_stamp; esp_err_t err = sdio_slave_send_queue(addr, len, (void *)timestamp, portMAX_DELAY); if (err != ESP_OK) { return err; }{...} err = sdio_slave_send_get_finished((void **)&ret_stamp, portMAX_DELAY); if (err != ESP_OK) { return err; }{...} SDIO_SLAVE_CHECK(ret_stamp == timestamp, "already sent without return before", ESP_ERR_INVALID_STATE); return ESP_OK; }{ ... } //clear data but keep counter static esp_err_t send_flush_data(void) { esp_err_t err; BaseType_t ret __attribute__((unused)); while (1) { void *finished_arg; uint32_t return_cnt = 0; err = sdio_slave_hal_send_flush_next_buffer(context.hal, &finished_arg, &return_cnt); if (err == ESP_OK) { ret = xQueueSend(context.ret_queue, &finished_arg, portMAX_DELAY); assert(ret == pdTRUE); for (size_t i = 0; i < return_cnt; i++) { ret = xSemaphoreGive(context.remain_cnt); assert(ret == pdTRUE); }{...} }{...} else { if (err == ESP_ERR_NOT_FOUND) { err = ESP_OK; }{...} break; }{...} }{...} if (err == ESP_ERR_INVALID_STATE) { ESP_LOGE(TAG, "flush data when transmission started"); }{...} return err; }{ ... } /*--------------------------------------------------------------------------- * Recv *--------------------------------------------------------------------------*//* ... */ #define CHECK_HANDLE_IDLE(desc) do { if (desc == NULL || !desc->not_receiving) {\ return ESP_ERR_INVALID_ARG; }{...} }{...} while(0)... static inline void critical_enter_recv(void) { portENTER_CRITICAL(&context.recv_spinlock); }{ ... } static inline void critical_exit_recv(void) { portEXIT_CRITICAL(&context.recv_spinlock); }{ ... } // remove data, still increase the counter static esp_err_t recv_flush_data(void) { while (1) { BaseType_t ret = xSemaphoreTake(context.recv_event, 0); if (ret == pdFALSE) { break; }{...} critical_enter_recv(); sdio_slave_hal_recv_flush_one_buffer(context.hal); critical_exit_recv(); }{...} return ESP_OK; }{ ... } static void sdio_intr_recv(void *arg) { BaseType_t yield = 0; bool triggered = sdio_slave_hal_recv_done(context.hal); while (triggered) { portENTER_CRITICAL_ISR(&context.recv_spinlock); bool has_next_item = sdio_slave_hal_recv_has_next_item(context.hal); portEXIT_CRITICAL_ISR(&context.recv_spinlock); if (has_next_item) { ESP_EARLY_LOGV(TAG, "intr_recv: Give"); xSemaphoreGiveFromISR(context.recv_event, &yield); continue; //check the linked list again skip the interrupt checking }{...} // if no more items on the list, check the interrupt again, // will loop until the interrupt bit is kept cleared. triggered = sdio_slave_hal_recv_done(context.hal); }{...} if (yield) { portYIELD_FROM_ISR(); }{...} }{ ... } esp_err_t sdio_slave_recv_load_buf(sdio_slave_buf_handle_t handle) { recv_desc_t *desc = (recv_desc_t *)handle; CHECK_HANDLE_IDLE(desc); assert(desc->not_receiving); critical_enter_recv(); TAILQ_REMOVE(&context.recv_reg_list, desc, tail_entry); desc->not_receiving = 0; //manually remove the prev link (by set not_receiving=0), to indicate this is in the queue sdio_slave_hal_load_buf(context.hal, &desc->hal_desc); critical_exit_recv(); return ESP_OK; }{ ... } sdio_slave_buf_handle_t sdio_slave_recv_register_buf(uint8_t *start) { SDIO_SLAVE_CHECK(esp_ptr_dma_capable(start) && (uint32_t)start % 4 == 0, "buffer to register should be DMA capable and 32-bit aligned", NULL); recv_desc_t *desc = (recv_desc_t *)heap_caps_malloc(sizeof(recv_desc_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA); if (desc == NULL) { SDIO_SLAVE_LOGE("cannot allocate lldesc for new buffer"); return NULL; }{...} //initially in the reg list sdio_slave_hal_recv_init_desc(context.hal, &desc->hal_desc, start); critical_enter_recv(); TAILQ_INSERT_TAIL(&context.recv_reg_list, desc, tail_entry); critical_exit_recv(); return desc; }{ ... } esp_err_t sdio_slave_recv(sdio_slave_buf_handle_t *handle_ret, uint8_t **out_addr, size_t *out_len, TickType_t wait) { esp_err_t ret = sdio_slave_recv_packet(handle_ret, wait); if (ret == ESP_ERR_NOT_FINISHED) { //This API was not aware of the EOF info, return ESP_OK to keep back-compatible. ret = ESP_OK; }{...} if (ret == ESP_OK) { recv_desc_t *desc = (recv_desc_t *)(*handle_ret); if (out_addr) { *out_addr = (uint8_t *)desc->hal_desc.buf; }{...} if (out_len) { *out_len = desc->hal_desc.length; }{...} }{...} return ret; }{ ... } esp_err_t sdio_slave_recv_packet(sdio_slave_buf_handle_t *handle_ret, TickType_t wait) { SDIO_SLAVE_CHECK(handle_ret != NULL, "handle address cannot be 0", ESP_ERR_INVALID_ARG); BaseType_t err = xSemaphoreTake(context.recv_event, wait); if (err == pdFALSE) { return ESP_ERR_TIMEOUT; }{...} esp_err_t ret = ESP_OK; critical_enter_recv(); //remove from queue, add back to reg list. recv_desc_t *desc = (recv_desc_t *)sdio_slave_hal_recv_unload_desc(context.hal); assert(desc != NULL && desc->hal_desc.owner == 0); TAILQ_INSERT_TAIL(&context.recv_reg_list, desc, tail_entry); critical_exit_recv(); *handle_ret = (sdio_slave_buf_handle_t)desc; if (!desc->hal_desc.eof) { ret = ESP_ERR_NOT_FINISHED; }{...} return ret; }{ ... } esp_err_t sdio_slave_recv_unregister_buf(sdio_slave_buf_handle_t handle) { recv_desc_t *desc = (recv_desc_t *)handle; CHECK_HANDLE_IDLE(desc); //in the queue, fail. critical_enter_recv(); TAILQ_REMOVE(&context.recv_reg_list, desc, tail_entry); critical_exit_recv(); free(desc); return ESP_OK; }{ ... } uint8_t *sdio_slave_recv_get_buf(sdio_slave_buf_handle_t handle, size_t *len_o) { if (handle == NULL) { return NULL; }{...} recv_desc_t *desc = (recv_desc_t *)handle; if (len_o != NULL) { *len_o = desc->hal_desc.length; }{...} return (uint8_t *)desc->hal_desc.buf; }{ ... }
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.