Select one of the symbols to view example projects that use it.
 
Outline
#include "pico/multicore.h"
#include "hardware/sync.h"
#include "hardware/irq.h"
#include "pico/runtime_init.h"
#include "hardware/riscv.h"
#include "hardware/structs/scb.h"
#include "hardware/structs/sio.h"
#include "hardware/regs/psm.h"
#include "hardware/claim.h"
#include "hardware/structs/m33.h"
lockout_victim_initialized
multicore_fifo_push_blocking(uint32_t)
multicore_fifo_push_timeout_us(uint32_t, uint64_t)
multicore_fifo_pop_blocking()
multicore_fifo_pop_timeout_us(uint64_t, uint32_t *)
core1_stack
core1_trampoline()
core1_wrapper(int (*)(void), void *)
multicore_reset_core1()
multicore_launch_core1_with_stack(void (*)(void), uint32_t *, size_t)
multicore_launch_core1(void (*)(void))
multicore_launch_core1_raw(void (*)(void), uint32_t *, uint32_t)
#define LOCKOUT_MAGIC_START
#define LOCKOUT_MAGIC_END
lockout_mutex
lockout_in_progress
multicore_lockout_handler()
check_lockout_mutex_init()
multicore_lockout_victim_init()
multicore_lockout_handshake(uint32_t, absolute_time_t)
multicore_lockout_start_block_until(absolute_time_t)
multicore_lockout_start_timeout_us(uint64_t)
multicore_lockout_start_blocking()
multicore_lockout_end_block_until(absolute_time_t)
multicore_lockout_end_timeout_us(uint64_t)
multicore_lockout_end_blocking()
multicore_lockout_victim_is_initialized(uint)
doorbell_claimed
is_bit_claimed(const uint8_t *, uint)
set_claimed_bit(uint8_t *, uint)
clear_claimed_bit(uint8_t *, uint)
multicore_doorbell_claim_under_lock(uint, uint, bool)
multicore_doorbell_claim(uint, uint)
multicore_doorbell_claim_unused(uint, bool)
multicore_doorbell_unclaim(uint, uint)
Files
loading...
SourceVuRaspberry Pi Pico SDK and ExamplesPicoSDKsrc/rp2_common/pico_multicore/multicore.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause *//* ... */ #include "pico/multicore.h" #include "hardware/sync.h" #include "hardware/irq.h" #include "pico/runtime_init.h" #ifdef __riscv #include "hardware/riscv.h" #else #include "hardware/structs/scb.h" #endif #include "hardware/structs/sio.h" #include "hardware/regs/psm.h" #include "hardware/claim.h" #if !PICO_RP2040 #ifndef __riscv #include "hardware/structs/m33.h" #endif/* ... */ #endif // note that these are not reset by core reset, however for now, I think people resetting cores // and then relying on multicore_lockout for that core without re-initializing, is probably // something we can live with breaking. // // whilst we could clear this in core 1 reset path, that doesn't necessarily catch all, // and means pulling in this array even if multicore_lockout is not used. static bool lockout_victim_initialized[NUM_CORES]; void multicore_fifo_push_blocking(uint32_t data) { multicore_fifo_push_blocking_inline(data); }{ ... } bool multicore_fifo_push_timeout_us(uint32_t data, uint64_t timeout_us) { absolute_time_t end_time = make_timeout_time_us(timeout_us); // We wait for the fifo to have some space while (!multicore_fifo_wready()) { tight_loop_contents(); if (time_reached(end_time)) return false; }while (!multicore_fifo_wready()) { ... } sio_hw->fifo_wr = data; // Fire off an event to the other core __sev(); return true; }{ ... } uint32_t multicore_fifo_pop_blocking(void) { return multicore_fifo_pop_blocking_inline(); }{ ... } bool multicore_fifo_pop_timeout_us(uint64_t timeout_us, uint32_t *out) { absolute_time_t end_time = make_timeout_time_us(timeout_us); // If nothing there yet, we wait for an event first, // to try and avoid too much busy waiting while (!multicore_fifo_rvalid()) { if (best_effort_wfe_or_timeout(end_time)) return false; }while (!multicore_fifo_rvalid()) { ... } *out = sio_hw->fifo_rd; return true; }{ ... } // Default stack for core1 ... if multicore_launch_core1 is not included then .stack1 section will be garbage collected static uint32_t __attribute__((section(".stack1"))) core1_stack[PICO_CORE1_STACK_SIZE / sizeof(uint32_t)]; static void __attribute__ ((naked)) core1_trampoline(void) { #ifdef __riscv // Do not add function calls here, because we want to preserve the return // address pointing back to the bootrom launch routine. pico_default_asm( "lw a0, 0(sp)\n" "lw a1, 4(sp)\n" "lw a2, 8(sp)\n" "lw gp, 12(sp)\n" "addi sp, sp, 16\n" "jr a2\n" );/* ... */ #else pico_default_asm("pop {r0, r1, pc}"); #endif }{ ... } int core1_wrapper(int (*entry)(void), void *stack_base) { #if !PICO_RUNTIME_SKIP_INIT_PER_CORE_INSTALL_STACK_GUARD // install core1 stack guard runtime_init_per_core_install_stack_guard(stack_base);/* ... */ #else (void)stack_base; #endif runtime_run_per_core_initializers(); return (*entry)(); }{ ... } void multicore_reset_core1(void) { // Use atomic aliases just in case core 1 is also manipulating some PSM state io_rw_32 *power_off = (io_rw_32 *) (PSM_BASE + PSM_FRCE_OFF_OFFSET); io_rw_32 *power_off_set = hw_set_alias(power_off); io_rw_32 *power_off_clr = hw_clear_alias(power_off); // Hard-reset core 1. // Reading back confirms the core 1 reset is in the correct state, but also // forces APB IO bridges to fence on any internal store buffering *power_off_set = PSM_FRCE_OFF_PROC1_BITS; while (!(*power_off & PSM_FRCE_OFF_PROC1_BITS)) tight_loop_contents(); // Allow for the fact that the caller may have already enabled the FIFO IRQ for their // own purposes (expecting FIFO content after core 1 is launched). We must disable // the IRQ during the handshake, then restore afterward uint irq_num = SIO_FIFO_IRQ_NUM(0); bool enabled = irq_is_enabled(irq_num); irq_set_enabled(irq_num, false); // Bring core 1 back out of reset. It will drain its own mailbox FIFO, then push // a 0 to our mailbox to tell us it has done this. *power_off_clr = PSM_FRCE_OFF_PROC1_BITS; // check the pushed value uint32_t value = multicore_fifo_pop_blocking(); assert(value == 0); (void) value; // silence warning // restore interrupt state irq_set_enabled(irq_num, enabled); }{ ... } void multicore_launch_core1_with_stack(void (*entry)(void), uint32_t *stack_bottom, size_t stack_size_bytes) { assert(!(stack_size_bytes & 3u)); uint32_t *stack_ptr = stack_bottom + stack_size_bytes / sizeof(uint32_t); // Push values onto top of stack for core1_trampoline #ifdef __riscv // On RISC-V we also need to initialise the global pointer stack_ptr -= 4; uint32_t vector_table = riscv_read_csr(mtvec); asm volatile ("mv %0, gp" : "=r"(stack_ptr[3]));/* ... */ #else stack_ptr -= 3; uint32_t vector_table = scb_hw->vtor;/* ... */ #endif stack_ptr[0] = (uintptr_t) entry; stack_ptr[1] = (uintptr_t) stack_bottom; stack_ptr[2] = (uintptr_t) core1_wrapper; #if PICO_VTABLE_PER_CORE #warning PICO_VTABLE_PER_CORE==1 is not currently supported in pico_multicore panic_unsupported();/* ... */ #endif multicore_launch_core1_raw(core1_trampoline, stack_ptr, vector_table); }{ ... } void multicore_launch_core1(void (*entry)(void)) { extern uint32_t __StackOneBottom; uint32_t *stack_limit = (uint32_t *) &__StackOneBottom; // hack to reference core1_stack although that pointer is wrong.... core1_stack should always be <= stack_limit, if not boom! uint32_t *stack = core1_stack <= stack_limit ? stack_limit : (uint32_t *) -1; multicore_launch_core1_with_stack(entry, stack, sizeof(core1_stack)); }{ ... } void multicore_launch_core1_raw(void (*entry)(void), uint32_t *sp, uint32_t vector_table) { // Allow for the fact that the caller may have already enabled the FIFO IRQ for their // own purposes (expecting FIFO content after core 1 is launched). We must disable // the IRQ during the handshake, then restore afterwards. uint irq_num = SIO_FIFO_IRQ_NUM(0); bool enabled = irq_is_enabled(irq_num); irq_set_enabled(irq_num, false); // Values to be sent in order over the FIFO from core 0 to core 1 // // vector_table is value for VTOR register // sp is initial stack pointer (SP) // entry is the initial program counter (PC) (don't forget to set the thumb bit!) const uint32_t cmd_sequence[] = {0, 0, 1, (uintptr_t) vector_table, (uintptr_t) sp, (uintptr_t) entry}; uint seq = 0; do { uint cmd = cmd_sequence[seq]; // Always drain the READ FIFO (from core 1) before sending a 0 if (!cmd) { multicore_fifo_drain(); // Execute a SEV as core 1 may be waiting for FIFO space via WFE __sev(); }if (!cmd) { ... } multicore_fifo_push_blocking(cmd); uint32_t response = multicore_fifo_pop_blocking(); // Move to next state on correct response (echo-d value) otherwise start over seq = cmd == response ? seq + 1 : 0; ...} while (seq < count_of(cmd_sequence)); irq_set_enabled(irq_num, enabled); }{ ... } #define LOCKOUT_MAGIC_START 0x73a8831eu #define LOCKOUT_MAGIC_END (~LOCKOUT_MAGIC_START) static mutex_t lockout_mutex; static bool lockout_in_progress; // note this method is in RAM because lockout is used when writing to flash // it only makes inline calls static void __isr __not_in_flash_func(multicore_lockout_handler)(void) { multicore_fifo_clear_irq(); while (multicore_fifo_rvalid()) { if (sio_hw->fifo_rd == LOCKOUT_MAGIC_START) { uint32_t save = save_and_disable_interrupts(); multicore_fifo_push_blocking_inline(LOCKOUT_MAGIC_START); while (multicore_fifo_pop_blocking_inline() != LOCKOUT_MAGIC_END) { tight_loop_contents(); // not tight but endless potentially }while (multicore_fifo_pop_blocking_inline() != LOCKOUT_MAGIC_END) { ... } restore_interrupts_from_disabled(save); multicore_fifo_push_blocking_inline(LOCKOUT_MAGIC_END); }if (sio_hw->fifo_rd == LOCKOUT_MAGIC_START) { ... } }while (multicore_fifo_rvalid()) { ... } ...} static void check_lockout_mutex_init(void) { // use known available lock - we only need it briefly uint32_t save = hw_claim_lock(); if (!mutex_is_initialized(&lockout_mutex)) { mutex_init(&lockout_mutex); }if (!mutex_is_initialized(&lockout_mutex)) { ... } hw_claim_unlock(save); }{ ... } void multicore_lockout_victim_init(void) { check_lockout_mutex_init(); // On platforms other than RP2040, these are actually the same IRQ number // (each core only sees its own IRQ, always at the same IRQ number). uint core_num = get_core_num(); uint fifo_irq_this_core = SIO_FIFO_IRQ_NUM(core_num); irq_set_exclusive_handler(fifo_irq_this_core, multicore_lockout_handler); irq_set_enabled(fifo_irq_this_core, true); lockout_victim_initialized[core_num] = true; }{ ... } static bool multicore_lockout_handshake(uint32_t magic, absolute_time_t until) { uint irq_num = SIO_FIFO_IRQ_NUM(get_core_num()); bool enabled = irq_is_enabled(irq_num); if (enabled) irq_set_enabled(irq_num, false); bool rc = false; do { int64_t next_timeout_us = absolute_time_diff_us(get_absolute_time(), until); if (next_timeout_us < 0) { break; }if (next_timeout_us < 0) { ... } multicore_fifo_push_timeout_us(magic, (uint64_t)next_timeout_us); next_timeout_us = absolute_time_diff_us(get_absolute_time(), until); if (next_timeout_us < 0) { break; }if (next_timeout_us < 0) { ... } uint32_t word = 0; if (!multicore_fifo_pop_timeout_us((uint64_t)next_timeout_us, &word)) { break; }if (!multicore_fifo_pop_timeout_us((uint64_t)next_timeout_us, &word)) { ... } if (word == magic) { rc = true; }if (word == magic) { ... } ...} while (!rc); if (enabled) irq_set_enabled(irq_num, true); return rc; }{ ... } static bool multicore_lockout_start_block_until(absolute_time_t until) { check_lockout_mutex_init(); if (!mutex_enter_block_until(&lockout_mutex, until)) { return false; }if (!mutex_enter_block_until(&lockout_mutex, until)) { ... } hard_assert(!lockout_in_progress); bool rc = multicore_lockout_handshake(LOCKOUT_MAGIC_START, until); lockout_in_progress = rc; mutex_exit(&lockout_mutex); return rc; }{ ... } bool multicore_lockout_start_timeout_us(uint64_t timeout_us) { return multicore_lockout_start_block_until(make_timeout_time_us(timeout_us)); }{ ... } void multicore_lockout_start_blocking(void) { multicore_lockout_start_block_until(at_the_end_of_time); }{ ... } static bool multicore_lockout_end_block_until(absolute_time_t until) { assert(mutex_is_initialized(&lockout_mutex)); if (!mutex_enter_block_until(&lockout_mutex, until)) { return false; }if (!mutex_enter_block_until(&lockout_mutex, until)) { ... } assert(lockout_in_progress); bool rc = multicore_lockout_handshake(LOCKOUT_MAGIC_END, until); if (rc) { lockout_in_progress = false; }if (rc) { ... } mutex_exit(&lockout_mutex); return rc; }{ ... } bool multicore_lockout_end_timeout_us(uint64_t timeout_us) { return multicore_lockout_end_block_until(make_timeout_time_us(timeout_us)); }{ ... } void multicore_lockout_end_blocking(void) { multicore_lockout_end_block_until(at_the_end_of_time); }{ ... } bool multicore_lockout_victim_is_initialized(uint core_num) { return lockout_victim_initialized[core_num]; }{ ... } #if NUM_DOORBELLS static uint8_t doorbell_claimed[NUM_CORES][(NUM_DOORBELLS + 7) >> 3]; static inline bool is_bit_claimed(const uint8_t *bits, uint bit_index) { return (bits[bit_index >> 3u] & (1u << (bit_index & 7u))); }{ ... } static inline void set_claimed_bit(uint8_t *bits, uint bit_index) { bits[bit_index >> 3u] |= ( uint8_t ) ( 1u << ( bit_index & 7u )); }{ ... } static inline void clear_claimed_bit(uint8_t *bits, uint bit_index) { bits[bit_index >> 3u] &= ( uint8_t ) ~( 1u << ( bit_index & 7u )); }{ ... } static bool multicore_doorbell_claim_under_lock(uint doorbell_num, uint core_mask, bool required) { static_assert(NUM_CORES == 2, ""); uint claimed_cores_for_doorbell = (uint) (is_bit_claimed(doorbell_claimed[0], doorbell_num) | (is_bit_claimed(doorbell_claimed[1], doorbell_num + 1u) << 1)); if (claimed_cores_for_doorbell & core_mask) { if (required) { panic( "Multicoore doorbell %d already claimed on core mask 0x%x; requested core mask 0x%x\n", claimed_cores_for_doorbell, core_mask); }if (required) { ... } return false; }if (claimed_cores_for_doorbell & core_mask) { ... } else { for(uint i=0; i<NUM_CORES; i++) { if (core_mask & (1u << i)) { set_claimed_bit(doorbell_claimed[i], doorbell_num); }if (core_mask & (1u << i)) { ... } }for (uint i=0; i return true; }else { ... } }{ ... } void multicore_doorbell_claim(uint doorbell_num, uint core_mask) { check_doorbell_num_param(doorbell_num); uint32_t save = hw_claim_lock(); multicore_doorbell_claim_under_lock(doorbell_num, core_mask, true); hw_claim_unlock(save); }{ ... } int multicore_doorbell_claim_unused(uint core_mask, bool required) { int rc = PICO_ERROR_INSUFFICIENT_RESOURCES; uint32_t save = hw_claim_lock(); for(int i=NUM_DOORBELLS-1; i>=0; i--) { if (multicore_doorbell_claim_under_lock((uint) i, core_mask, false)) { rc = i; break; }if (multicore_doorbell_claim_under_lock((uint) i, core_mask, false)) { ... } }for (int i=NUM_DOORBELLS-1; i>=0; i--) { ... } if (required && rc < 0) { panic("No free doorbells"); }if (required && rc < 0) { ... } hw_claim_unlock(save); return rc; }{ ... } void multicore_doorbell_unclaim(uint doorbell_num, uint core_mask) { check_doorbell_num_param(doorbell_num); uint32_t save = hw_claim_lock(); for(uint i=0; i < NUM_CORES; i++) { if (core_mask & (1u << i)) { assert(is_bit_claimed(doorbell_claimed[i], doorbell_num)); clear_claimed_bit(doorbell_claimed[i], doorbell_num); }if (core_mask & (1u << i)) { ... } }for (uint i=0; i < NUM_CORES; i++) { ... } hw_claim_unlock(save); }{ ... } /* ... */ #endif
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.