1
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
34
35
36
37
38
39
41
42
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
85
86
87
88
89
90
91
92
93
94
95
96
97
98
101
102
103
104
105
106
107
108
109
110
111
112
113
114
117
118
121
122
127
132
133
137
138
139
140
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
172
173
174
175
176
177
178
179
180
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
247
248
249
250
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
278
279
280
281
282
283
284
285
286
287
291
292
293
294
298
299
300
301
302
303
304
305
306
307
308
309
312
313
314
315
316
317
318
319
320
321
328
329
334
335
336
346
347
348
349
/* ... */
#include "sdkconfig.h"
#include "sys/param.h"
#include "esp_timer_impl.h"
#include "esp_timer.h"
#include "esp_err.h"
#include "esp_system.h"
#include "esp_task.h"
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_private/esp_clk.h"
#include "esp_private/periph_ctrl.h"
#include "soc/soc.h"
#include "soc/timer_group_reg.h"
#include "soc/rtc.h"
#include "hal/timer_ll.h"
#include "freertos/FreeRTOS.h"17 includes
/* ... */
#define LACT_MODULE 0
#if LACT_MODULE == 0
#define INTR_SOURCE_LACT ETS_TG0_LACT_LEVEL_INTR_SOURCE
#define PERIPH_LACT PERIPH_TIMG0_MODULE/* ... */
#elif LACT_MODULE == 1
#define INTR_SOURCE_LACT ETS_TG1_LACT_LEVEL_INTR_SOURCE
#define PERIPH_LACT PERIPH_TIMG1_MODULE/* ... */
#else
#error "Incorrect the number of LACT module (only 0 or 1)"
#endif
/* ... */
#define TICKS_PER_US 2
#define CONFIG_REG (TIMG_LACTCONFIG_REG(LACT_MODULE))
#define RTC_STEP_REG (TIMG_LACTRTC_REG(LACT_MODULE))
#define ALARM_LO_REG (TIMG_LACTALARMLO_REG(LACT_MODULE))
#define ALARM_HI_REG (TIMG_LACTALARMHI_REG(LACT_MODULE))
#define COUNT_LO_REG (TIMG_LACTLO_REG(LACT_MODULE))
#define COUNT_HI_REG (TIMG_LACTHI_REG(LACT_MODULE))
#define UPDATE_REG (TIMG_LACTUPDATE_REG(LACT_MODULE))
#define LOAD_REG (TIMG_LACTLOAD_REG(LACT_MODULE))
#define LOAD_LO_REG (TIMG_LACTLOADLO_REG(LACT_MODULE))
#define LOAD_HI_REG (TIMG_LACTLOADHI_REG(LACT_MODULE))
#define INT_ENA_REG (TIMG_INT_ENA_TIMERS_REG(LACT_MODULE))
#define INT_ST_REG (TIMG_INT_ST_TIMERS_REG(LACT_MODULE))
#define INT_CLR_REG (TIMG_INT_CLR_TIMERS_REG(LACT_MODULE))14 defines
typedef struct {
union {
struct {
uint32_t lo;
uint32_t hi;
}{ ... };
uint64_t val;
}{ ... };
}{ ... } timer_64b_reg_t;
static const char* TAG = "esp_timer_impl";
#define NOT_USED 0xBAD00FAD
#ifdef CONFIG_ESP_TIMER_ISR_AFFINITY_NO_AFFINITY
#define ISR_HANDLERS (CONFIG_FREERTOS_NUMBER_OF_CORES)
#else
#define ISR_HANDLERS (1)
#endif
static intr_handle_t s_timer_interrupt_handle[ISR_HANDLERS] = { NULL };
/* ... */
static intr_handler_t s_alarm_handler = NULL;
extern portMUX_TYPE s_time_update_lock;
extern uint64_t timestamp_id[2];
uint64_t IRAM_ATTR esp_timer_impl_get_counter_reg(void)
{
uint32_t lo, hi;
uint32_t lo_start = REG_READ(COUNT_LO_REG);
uint32_t div = REG_GET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER);
/* ... */
REG_WRITE(UPDATE_REG, 1);
do {
lo = REG_READ(COUNT_LO_REG);
}{...} while (lo == lo_start && div-- > 0);
/* ... */
do {
lo_start = lo;
hi = REG_READ(COUNT_HI_REG);
lo = REG_READ(COUNT_LO_REG);
}{...} while (lo != lo_start);
timer_64b_reg_t result = {
.lo = lo,
.hi = hi
}{...};
return result.val;
}{ ... }
int64_t IRAM_ATTR esp_timer_impl_get_time(void)
{
return esp_timer_impl_get_counter_reg() / TICKS_PER_US;
}{ ... }
int64_t esp_timer_get_time(void) __attribute__((alias("esp_timer_impl_get_time")));
void IRAM_ATTR esp_timer_impl_set_alarm_id(uint64_t timestamp, unsigned alarm_id)
{
assert(alarm_id < sizeof(timestamp_id) / sizeof(timestamp_id[0]));
portENTER_CRITICAL_SAFE(&s_time_update_lock);
timestamp_id[alarm_id] = timestamp;
timestamp = MIN(timestamp_id[0], timestamp_id[1]);
if (timestamp != UINT64_MAX) {
int64_t offset = TICKS_PER_US * 2;
uint64_t now_time = esp_timer_impl_get_counter_reg();
timer_64b_reg_t alarm = { .val = MAX(timestamp * TICKS_PER_US, now_time + offset) };
do {
REG_CLR_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
REG_WRITE(ALARM_LO_REG, alarm.lo);
REG_WRITE(ALARM_HI_REG, alarm.hi);
REG_SET_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
now_time = esp_timer_impl_get_counter_reg();
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
if (delta <= 0 && REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) == 0) {
offset += llabs(delta) + TICKS_PER_US * 2;
alarm.val = now_time + offset;
}{...} else {
break;
}{...}
}{...} while (1);
}{...}
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
}{ ... }
static void IRAM_ATTR timer_alarm_isr(void *arg)
{
#if ISR_HANDLERS == 1
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
(*s_alarm_handler)(arg);/* ... */
#else
static volatile uint32_t processed_by = NOT_USED;
static volatile bool pending_alarm = false;
portENTER_CRITICAL_ISR(&s_time_update_lock);
if (REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST)) {
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
if (processed_by == NOT_USED) {
processed_by = xPortGetCoreID();
do {
pending_alarm = false;
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
portEXIT_CRITICAL_ISR(&s_time_update_lock);
(*s_alarm_handler)(arg);
portENTER_CRITICAL_ISR(&s_time_update_lock);
}{...} while (REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) || pending_alarm);
processed_by = NOT_USED;
}{...} else {
pending_alarm = true;
}{...}
}{...}
portEXIT_CRITICAL_ISR(&s_time_update_lock);/* ... */
#endif
}{ ... }
void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
{
portENTER_CRITICAL_SAFE(&s_time_update_lock);
assert(apb_ticks_per_us >= 3 && "divider value too low");
assert(apb_ticks_per_us % TICKS_PER_US == 0 && "APB frequency (in MHz) should be divisible by TICK_PER_US");
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, apb_ticks_per_us / TICKS_PER_US);
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
}{ ... }
void esp_timer_impl_set(uint64_t new_us)
{
portENTER_CRITICAL(&s_time_update_lock);
timer_64b_reg_t dst = { .val = new_us * TICKS_PER_US };
REG_WRITE(LOAD_LO_REG, dst.lo);
REG_WRITE(LOAD_HI_REG, dst.hi);
REG_WRITE(LOAD_REG, 1);
portEXIT_CRITICAL(&s_time_update_lock);
}{ ... }
void esp_timer_impl_advance(int64_t time_diff_us)
{
uint64_t now = esp_timer_impl_get_time();
esp_timer_impl_set(now + time_diff_us);
}{ ... }
esp_err_t esp_timer_impl_early_init(void)
{
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_LACT, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(LACT_MODULE, true);
timer_ll_reset_register(LACT_MODULE);
}{...}
}{...}
REG_WRITE(CONFIG_REG, 0);
REG_WRITE(LOAD_LO_REG, 0);
REG_WRITE(LOAD_HI_REG, 0);
REG_WRITE(ALARM_LO_REG, UINT32_MAX);
REG_WRITE(ALARM_HI_REG, UINT32_MAX);
REG_WRITE(LOAD_REG, 1);
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, APB_CLK_FREQ / 1000000 / TICKS_PER_US);
REG_SET_BIT(CONFIG_REG, TIMG_LACT_INCREASE |
TIMG_LACT_LEVEL_INT_EN |
TIMG_LACT_EN);
return ESP_OK;
}{ ... }
esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
{
if (s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()] != NULL) {
ESP_EARLY_LOGE(TAG, "timer ISR is already initialized");
return ESP_ERR_INVALID_STATE;
}{...}
int isr_flags = ESP_INTR_FLAG_INTRDISABLED
| ((1 << CONFIG_ESP_TIMER_INTERRUPT_LEVEL) & ESP_INTR_FLAG_LEVELMASK)
| ESP_INTR_FLAG_IRAM;
esp_err_t err = esp_intr_alloc(INTR_SOURCE_LACT, isr_flags,
&timer_alarm_isr, NULL,
&s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()]);
if (err != ESP_OK) {
ESP_EARLY_LOGE(TAG, "Can not allocate ISR handler (0x%0x)", err);
return err;
}{...}
if (s_alarm_handler == NULL) {
s_alarm_handler = alarm_handler;
/* ... */
REG_SET_BIT(INT_ENA_REG, TIMG_LACT_INT_ENA);
esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
uint32_t slowclk_ticks_per_us = esp_clk_slowclk_cal_get() * TICKS_PER_US;
REG_SET_FIELD(RTC_STEP_REG, TIMG_LACT_RTC_STEP_LEN, slowclk_ticks_per_us);
}{...}
err = esp_intr_enable(s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()]);
if (err != ESP_OK) {
ESP_EARLY_LOGE(TAG, "Can not enable ISR (0x%0x)", err);
}{...}
return err;
}{ ... }
void esp_timer_impl_deinit(void)
{
REG_WRITE(CONFIG_REG, 0);
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
for (unsigned i = 0; i < ISR_HANDLERS; i++) {
if (s_timer_interrupt_handle[i] != NULL) {
esp_intr_disable(s_timer_interrupt_handle[i]);
esp_intr_free(s_timer_interrupt_handle[i]);
s_timer_interrupt_handle[i] = NULL;
}{...}
}{...}
s_alarm_handler = NULL;
PERIPH_RCC_RELEASE_ATOMIC(PERIPH_LACT, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(LACT_MODULE, false);
}{...}
}{...}
}{ ... }
uint64_t esp_timer_impl_get_alarm_reg(void)
{
portENTER_CRITICAL_SAFE(&s_time_update_lock);
timer_64b_reg_t alarm = {
.lo = REG_READ(ALARM_LO_REG),
.hi = REG_READ(ALARM_HI_REG)
}{...};
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
return alarm.val;
}{ ... }
void esp_timer_private_update_apb_freq(uint32_t apb_ticks_per_us) __attribute__((alias("esp_timer_impl_update_apb_freq")));
void esp_timer_private_set(uint64_t new_us) __attribute__((alias("esp_timer_impl_set")));
void esp_timer_private_advance(int64_t time_diff_us) __attribute__((alias("esp_timer_impl_advance")));