Select one of the symbols to view example projects that use it.
 
Outline
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include <stdatomic.h>
#include "sdkconfig.h"
#include "esp_private/spi_share_hw_ctrl.h"
#include "esp_intr_alloc.h"
#include "soc/soc_caps.h"
#include "stdatomic.h"
#include "esp_log.h"
#include "esp_check.h"
#include <strings.h>
#include "esp_heap_caps.h"
#define SPI_BUS_LOCK_ISR_ATTR
#define SPI_BUS_LOCK_ISR_ATTR
#define SPI_BUSLOCK_ATTR
#define SPI_BUSLOCK_ATTR
spi_bus_lock_dev_t
spi_bus_lock_dev_t
spi_bus_lock_t
#define MAX_DEV_NUM
#define LOCK_SHIFT
#define PENDING_SHIFT
#define REQ_SHIFT
#define BIT1_MASK
#define LOCK_BIT
#define REQUEST_BIT
#define PENDING_BIT
#define DEV_MASK
#define ID_DEV_MASK
#define REQ_MASK
#define PEND_MASK
#define BG_MASK
#define LOCK_MASK
#define DEV_REQ_MASK
#define DEV_PEND_MASK
#define DEV_BG_MASK
spi_bus_lock_t
spi_bus_lock_dev_t
s_spinlock
TAG
lock_status_fetch_set(spi_bus_lock_t *, uint32_t)
lock_status_fetch_clear(spi_bus_lock_t *, uint32_t)
lock_status_fetch(spi_bus_lock_t *)
lock_status_init(spi_bus_lock_t *)
lock_status_clear(spi_bus_lock_t *, uint32_t)
resume_dev_in_isr(spi_bus_lock_dev_t *, BaseType_t *)
resume_dev(const spi_bus_lock_dev_t *)
bg_disable(spi_bus_lock_t *)
bg_enable(spi_bus_lock_t *)
req_core(spi_bus_lock_dev_t *)
acquire_core(spi_bus_lock_dev_t *)
schedule_core(spi_bus_lock_t *, uint32_t, spi_bus_lock_dev_t **)
acquire_end_core(spi_bus_lock_dev_t *)
update_pend_core(spi_bus_lock_t *, uint32_t)
clear_pend_core(spi_bus_lock_dev_t *)
bg_entry_core(spi_bus_lock_t *)
bg_exit_core(spi_bus_lock_t *, bool, BaseType_t *)
dev_wait_prepare(spi_bus_lock_dev_t *)
dev_wait(spi_bus_lock_dev_t *, TickType_t)
spi_bus_init_lock(spi_bus_lock_handle_t *, const spi_bus_lock_config_t *)
spi_bus_deinit_lock(spi_bus_lock_handle_t)
try_acquire_free_dev(spi_bus_lock_t *, bool)
spi_bus_lock_register_dev(spi_bus_lock_handle_t, spi_bus_lock_dev_config_t *, spi_bus_lock_dev_handle_t *)
spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t)
mask_get_id(uint32_t)
dev_lock_get_id(spi_bus_lock_dev_t *)
spi_bus_lock_set_bg_control(spi_bus_lock_handle_t, bg_ctrl_func_t, bg_ctrl_func_t, void *)
spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t)
spi_bus_lock_touch(spi_bus_lock_dev_handle_t)
spi_bus_lock_acquire_start(spi_bus_lock_dev_t *, TickType_t)
spi_bus_lock_acquire_end(spi_bus_lock_dev_t *)
spi_bus_lock_get_acquiring_dev(spi_bus_lock_t *)
spi_bus_lock_bg_entry(spi_bus_lock_t *)
spi_bus_lock_bg_exit(spi_bus_lock_t *, bool, BaseType_t *)
spi_bus_lock_bg_request(spi_bus_lock_dev_t *)
spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t, TickType_t)
spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t *)
spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t *, spi_bus_lock_dev_handle_t *)
spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t *)
spi_bus_lock_bg_req_exist(spi_bus_lock_t *)
g_spi_lock_main_flash_dev
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/esp_hw_support/spi_bus_lock.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 *//* ... */ #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include <stdatomic.h> #include "sdkconfig.h" #include "esp_private/spi_share_hw_ctrl.h" #include "esp_intr_alloc.h" #include "soc/soc_caps.h" #include "stdatomic.h" #include "esp_log.h" #include "esp_check.h" #include <strings.h> #include "esp_heap_caps.h"12 includes #ifdef CONFIG_ESP_SPI_BUS_LOCK_ISR_FUNCS_IN_IRAM #define SPI_BUS_LOCK_ISR_ATTR IRAM_ATTR #else #define SPI_BUS_LOCK_ISR_ATTR #endif #ifdef CONFIG_ESP_SPI_BUS_LOCK_FUNCS_IN_IRAM #define SPI_BUSLOCK_ATTR IRAM_ATTR #else #define SPI_BUSLOCK_ATTR #endif /* * This lock is designed to solve the conflicts between SPI devices (used in tasks) and * the background operations (ISR or cache access). * * There are N (device/task) + 1 (BG) acquiring processor candidates that may touch the bus. * * The core of the lock is a `status` atomic variable, which is always available. No intermediate * status is allowed. The atomic operations (mainly `atomic_fetch_and`, `atomic_fetch_or`) * atomically read the status, and bitwisely write status value ORed / ANDed with given masks. * * Definitions of the status: * - [30] WEAK_BG_FLAG, active when the BG is the cache * - [29:20] LOCK bits, active when corresponding device is asking for acquiring * - [19:10] PENDING bits, active when the BG acknowledges the REQ bits, but hasn't fully handled them. * - [ 9: 0] REQ bits, active when corresponding device is requesting for BG operations. * * The REQ bits together PENDING bits are called BG bits, which represent the actual BG request * state of devices. Either one of REQ or PENDING being active indicates the device has pending BG * requests. Reason of having two bits instead of one is in the appendix below. * * Acquiring processor means the current processor (task or ISR) allowed to touch the critical * resources, or the SPI bus. * * States of the lock: * - STATE_IDLE: There's no acquiring processor. No device is acquiring the bus, and no BG * operation is in progress. * * - STATE_ACQ: The acquiring processor is a device task. This means one of the devices is * acquiring the bus. * * - STATE_BG: The acquiring processor is the ISR, and there is no acquiring device. * * - STATE_BG_ACQ: The acquiring processor is the ISR, and there is an acquiring device. * * * Whenever a bit is written to the status, it means the a device on a task is trying to acquire * the lock (either for the task, or the ISR). When there is no LOCK bits or BG bits active, the * caller immediately become the acquiring processor. Otherwise, the task has to block, and the ISR * will not be invoked until scheduled by the current acquiring processor. * * The acquiring processor is responsible to assign the next acquiring processor by calling the * scheduler, usually after it finishes some requests, and cleared the corresponding status bit. * But there is one exception, when the last bit is cleared from the status, after which there is * no other LOCK bits or BG bits active, the acquiring processor lost its role immediately, and * don't need to call the scheduler to assign the next acquiring processor. * * The acquiring processor may also choose to assign a new acquiring device when there is no, by * calling `spi_bus_lock_bg_rotate_acq_dev` in the ISR. But the acquiring processor, in this case, * is still the ISR, until it calls the scheduler. * * * Transition of the FSM: * * - STATE_IDLE: no acquiring device, nor acquiring processor, no LOCK or BG bits active * -> STATE_BG: by `req_core` * -> STATE_ACQ: by `acquire_core` * * - STATE_BG: * * No acquiring device, the ISR is the acquiring processor, there is BG bits active, but no LOCK * bits * * The BG operation should be enabled while turning into this state. * * -> STATE_IDLE: by `bg_exit_core` after `clear_pend_core` for all BG bits * -> STATE_BG_ACQ: by `schedule_core`, when there is new LOCK bit set (by `acquire_core`) * * - STATE_BG_ACQ: * * There is acquiring device, the ISR is the acquiring processor, there may be BG bits active for * the acquiring device. * * The BG operation should be enabled while turning into this state. * * -> STATE_ACQ: by `bg_exit_core` after `clear_pend_core` for all BG bits for the acquiring * device. * * Should not go to the STATE_ACQ (unblock the acquiring task) until all requests of the * acquiring device are finished. This is to preserve the sequence of foreground (polling) and * background operations of the device. The background operations queued before the acquiring * should be completed first. * * - STATE_ACQ: * * There is acquiring device, the task is the acquiring processor, there is no BG bits active for * the acquiring device. * * The acquiring task (if blocked at `spi_bus_lock_acquire_start` or `spi_bus_lock_wait_bg_done`) * should be resumed while turning into this state. * * -> STATE_BG_ACQ: by `req_core` * -> STATE_BG_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another * device, and the new acquiring device has active BG bits. * -> STATE_ACQ (other device): by `acquire_end_core`, when there is LOCK bit for another devices, * but the new acquiring device has no active BG bits. * -> STATE_BG: by `acquire_end_core` when there is no LOCK bit active, but there are active BG * bits. * -> STATE_IDLE: by `acquire_end_core` when there is no LOCK bit, nor BG bit active. * * The `req_core` used in the task is a little special. It asks for acquiring processor for the * ISR. When it succeed for the first time, it will invoke the ISR (hence passing the acquiring * role to the BG). Otherwise it will not block, the ISR will be automatically be invoked by other * acquiring processor. The caller of `req_core` will never become acquiring processor by this * function. * * * Appendix: The design, that having both request bit and pending bit, is to solve the * concurrency issue between tasks and the bg, when the task can queue several requests, * however the request bit cannot represent the number of requests queued. * * Here's the workflow of task and ISR work concurrently: * - Task: (a) Write to Queue -> (b) Write request bit * The Task have to write request bit (b) after the data is prepared in the queue (a), * otherwise the BG may fail to read from the queue when it sees the request bit set. * * - BG: (c) Read queue -> (d) Clear request bit * Since the BG cannot know the number of requests queued, it have to repeatedly check the * queue (c), until it find the data is empty, and then clear the request bit (d). * * The events are possible to happen in the order: (c) -> (a) -> (b) -> (d). This may cause a false * clear of the request bit. And there will be data prepared in the queue, but the request bit is * inactive. * * (e) move REQ bits to PEND bits, happen before (c) is introduced to solve this problem. In this * case (d) is changed to clear the PEND bit. Even if (e) -> (c) -> (a) -> (b) -> (d), only PEND * bit is cleared, while the REQ bit is still active. *//* ... */ struct spi_bus_lock_dev_t; typedef struct spi_bus_lock_dev_t spi_bus_lock_dev_t; typedef struct spi_bus_lock_t spi_bus_lock_t; #define MAX_DEV_NUM 10 // Bit 29-20: lock bits, Bit 19-10: pending bits // Bit 9-0: request bits, Bit 30: #define LOCK_SHIFT 20 #define PENDING_SHIFT 10 #define REQ_SHIFT 0 #define WEAK_BG_FLAG BIT(30) /**< The bus is permanently requested by background operations. * This flag is weak, will not prevent acquiring of devices. But will help the BG to be re-enabled again after the bus is release. *//* ... */ // get the bit mask where bit [high-1, low] are all 1'b1 s. #define BIT1_MASK(high, low) ((UINT32_MAX << (high)) ^ (UINT32_MAX << (low))) #define LOCK_BIT(mask) ((mask) << LOCK_SHIFT) #define REQUEST_BIT(mask) ((mask) << REQ_SHIFT) #define PENDING_BIT(mask) ((mask) << PENDING_SHIFT) #define DEV_MASK(id) (LOCK_BIT(1<<id) | PENDING_BIT(1<<id) | REQUEST_BIT(1<<id)) #define ID_DEV_MASK(mask) (__builtin_ffs(mask) - 1) #define REQ_MASK BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM, REQ_SHIFT) #define PEND_MASK BIT1_MASK(PENDING_SHIFT+MAX_DEV_NUM, PENDING_SHIFT) #define BG_MASK BIT1_MASK(REQ_SHIFT+MAX_DEV_NUM*2, REQ_SHIFT) #define LOCK_MASK BIT1_MASK(LOCK_SHIFT+MAX_DEV_NUM, LOCK_SHIFT) #define DEV_REQ_MASK(dev) ((dev)->mask & REQ_MASK) #define DEV_PEND_MASK(dev) ((dev)->mask & PEND_MASK) #define DEV_BG_MASK(dev) ((dev)->mask & BG_MASK)18 defines struct spi_bus_lock_t { /** * The core of the lock. These bits are status of the lock, which should be always available. * No intermediate status is allowed. This is realized by atomic operations, mainly * `atomic_fetch_and`, `atomic_fetch_or`, which atomically read the status, and bitwise write * status value ORed / ANDed with given masks. * * The request bits together pending bits represent the actual bg request state of one device. * Either one of them being active indicates the device has pending bg requests. * * Whenever a bit is written to the status, it means the a device on a task is trying to * acquire the lock. But this will succeed only when no LOCK or BG bits active. * * The acquiring processor is responsible to call the scheduler to pass its role to other tasks * or the BG, unless it clear the last bit in the status register. *//* ... */ //// Critical resources, they are only writable by acquiring processor, and stable only when read by the acquiring processor. atomic_uint_fast32_t status; spi_bus_lock_dev_t* volatile acquiring_dev; ///< The acquiring device bool volatile acq_dev_bg_active; ///< BG is the acquiring processor serving the acquiring device, used for the wait_bg to skip waiting quickly. bool volatile in_isr; ///< ISR is touching HW //// End of critical resources atomic_intptr_t dev[DEV_NUM_MAX]; ///< Child locks. bg_ctrl_func_t bg_enable; ///< Function to enable background operations. bg_ctrl_func_t bg_disable; ///< Function to disable background operations void* bg_arg; ///< Argument for `bg_enable` and `bg_disable` functions. spi_bus_lock_dev_t* last_dev; ///< Last used device, to decide whether to refresh all registers. int periph_cs_num; ///< Number of the CS pins the HW has. //debug information int host_id; ///< Host ID, for debug information printing uint32_t new_req; ///< Last int_req when `spi_bus_lock_bg_start` is called. Debug use. }{ ... }; struct spi_bus_lock_dev_t { SemaphoreHandle_t semphr; ///< Binary semaphore to notify the device it claimed the bus spi_bus_lock_t* parent; ///< Pointer to parent spi_bus_lock_t uint32_t mask; ///< Bitwise OR-ed mask of the REQ, PEND, LOCK bits of this device }{ ... }; /** * @note 1 * This critical section is only used to fix such condition: * * define: lock_bits = (lock->status & LOCK_MASK) >> LOCK_SHIFT; This `lock_bits` is the Bit 29-20 of the lock->status * * 1. spi_hdl_1: * acquire_end_core(): * uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK); * * Because this is the first `spi_hdl_1`, so after this , lock_bits == 0`b0. status == 0 * * 2. spi_hdl_2: * acquire_core: * uint32_t status = lock_status_fetch_set(lock, dev_handle->mask & LOCK_MASK); * * Then here status is 0`b0, but lock_bits == 0`b10. Because this is the `spi_hdl_2` * * 3. spi_hdl_2: * `acquire_core` return true, because status == 0. `spi_bus_lock_acquire_start(spi_hdl_2)` then won't block. * * 4. spi_hdl_2: * spi_device_polling_end(spi_hdl_2). * * 5. spi_hdl_1: * acquire_end_core: * status is 0, so it clears the lock->acquiring_dev * * 6. spi_hdl_2: * spi_device_polling_end: * assert(handle == get_acquiring_dev(host)); Fail * * @note 2 * Only use this critical section in this condition. The critical section scope is limited to the smallest. * As `spi_bus_lock` influences the all the SPIs (including MSPI) a lot! *//* ... */ portMUX_TYPE s_spinlock = portMUX_INITIALIZER_UNLOCKED; DRAM_ATTR static const char TAG[] = "bus_lock"; static inline int mask_get_id(uint32_t mask); static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock); /******************************************************************************* * atomic operations to the status ******************************************************************************//* ... */ SPI_BUS_LOCK_ISR_ATTR static inline uint32_t lock_status_fetch_set(spi_bus_lock_t *lock, uint32_t set) { return atomic_fetch_or(&lock->status, set); }{ ... } IRAM_ATTR static inline uint32_t lock_status_fetch_clear(spi_bus_lock_t *lock, uint32_t clear) { return atomic_fetch_and(&lock->status, ~clear); }{ ... } IRAM_ATTR static inline uint32_t lock_status_fetch(spi_bus_lock_t *lock) { return atomic_load(&lock->status); }{ ... } SPI_BUS_LOCK_ISR_ATTR static inline void lock_status_init(spi_bus_lock_t *lock) { atomic_store(&lock->status, 0); }{ ... } // return the remaining status bits IRAM_ATTR static inline uint32_t lock_status_clear(spi_bus_lock_t* lock, uint32_t clear) { //the fetch and clear should be atomic, avoid missing the all '0' status when all bits are clear. uint32_t state = lock_status_fetch_clear(lock, clear); return state & (~clear); }{ ... } /******************************************************************************* * Schedule service * * The modification to the status bits may cause rotating of the acquiring processor. It also have * effects to `acquired_dev` (the acquiring device), `in_isr` (HW used in BG), and * `acq_dev_bg_active` (wait_bg_end can be skipped) members of the lock structure. * * Most of them should be atomic, and special attention should be paid to the operation * sequence. ******************************************************************************//* ... */ SPI_BUS_LOCK_ISR_ATTR static inline void resume_dev_in_isr(spi_bus_lock_dev_t *dev_lock, BaseType_t *do_yield) { xSemaphoreGiveFromISR(dev_lock->semphr, do_yield); }{ ... } IRAM_ATTR static inline void resume_dev(const spi_bus_lock_dev_t *dev_lock) { xSemaphoreGive(dev_lock->semphr); }{ ... } SPI_BUS_LOCK_ISR_ATTR static inline void bg_disable(spi_bus_lock_t *lock) { BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_disable); lock->bg_disable(lock->bg_arg); }{ ... } IRAM_ATTR static inline void bg_enable(spi_bus_lock_t* lock) { BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->bg_enable); lock->bg_enable(lock->bg_arg); }{ ... } // Set the REQ bit. If we become the acquiring processor, invoke the ISR and pass that to it. // The caller will never become the acquiring processor after this function returns. SPI_BUSLOCK_ATTR static inline void req_core(spi_bus_lock_dev_t *dev_handle) { spi_bus_lock_t *lock = dev_handle->parent; // Though `acquired_dev` is critical resource, `dev_handle == lock->acquired_dev` // is a stable statement unless `acquire_start` or `acquire_end` is called by current // device. if (dev_handle == lock->acquiring_dev) { // Set the REQ bit and check BG bits if we are the acquiring processor. // If the BG bits were not active before, invoke the BG again. // Avoid competitive risk against the `clear_pend_core`, `acq_dev_bg_active` should be set before // setting REQ bit. lock->acq_dev_bg_active = true; uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle)); if ((status & DEV_BG_MASK(dev_handle)) == 0) { bg_enable(lock); //acquiring processor passed to BG }{...} }{...} else { uint32_t status = lock_status_fetch_set(lock, DEV_REQ_MASK(dev_handle)); if (status == 0) { bg_enable(lock); //acquiring processor passed to BG }{...} }{...} }{ ... } //Set the LOCK bit. Handle related stuff and return true if we become the acquiring processor. SPI_BUS_LOCK_ISR_ATTR static inline bool acquire_core(spi_bus_lock_dev_t *dev_handle) { spi_bus_lock_t* lock = dev_handle->parent; //For this critical section, search `@note 1` in this file, to know details portENTER_CRITICAL_SAFE(&s_spinlock); uint32_t status = lock_status_fetch_set(lock, dev_handle->mask & LOCK_MASK); portEXIT_CRITICAL_SAFE(&s_spinlock); // Check all bits except WEAK_BG if ((status & (BG_MASK | LOCK_MASK)) == 0) { //succeed at once lock->acquiring_dev = dev_handle; BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active); if (status & WEAK_BG_FLAG) { //Mainly to disable the cache (Weak_BG), that is not able to disable itself bg_disable(lock); }{...} return true; }{...} return false; }{ ... } /** * Find the next acquiring processor according to the status. Will directly change * the acquiring device if new one found. * * Cases: * - BG should still be the acquiring processor (Return false): * 1. Acquiring device has active BG bits: out_desired_dev = new acquiring device * 2. No acquiring device, but BG active: out_desired_dev = randomly pick one device with active BG bits * - BG should yield to the task (Return true): * 3. Acquiring device has no active BG bits: out_desired_dev = new acquiring device * 4. No acquiring device while no active BG bits: out_desired_dev=NULL * * Acquiring device task need to be resumed only when case 3. * * This scheduling can happen in either task or ISR, so `in_isr` or `bg_active` not touched. * * @param lock * @param status Current status * @param out_desired_dev Desired device to work next, see above. * * @return False if BG should still be the acquiring processor, otherwise True (yield to task). *//* ... */ IRAM_ATTR static inline bool schedule_core(spi_bus_lock_t *lock, uint32_t status, spi_bus_lock_dev_t **out_desired_dev) { spi_bus_lock_dev_t* desired_dev = NULL; uint32_t lock_bits = (status & LOCK_MASK) >> LOCK_SHIFT; uint32_t bg_bits = status & BG_MASK; bg_bits = ((bg_bits >> REQ_SHIFT) | (bg_bits >> PENDING_SHIFT)) & REQ_MASK; bool bg_yield; if (lock_bits) { int dev_id = mask_get_id(lock_bits); desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]); BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev); lock->acquiring_dev = desired_dev; bg_yield = ((bg_bits & desired_dev->mask) == 0); lock->acq_dev_bg_active = !bg_yield; }{...} else { lock->acq_dev_bg_active = false; if (bg_bits) { int dev_id = mask_get_id(bg_bits); desired_dev = (spi_bus_lock_dev_t *)atomic_load(&lock->dev[dev_id]); BUS_LOCK_DEBUG_EXECUTE_CHECK(desired_dev); lock->acquiring_dev = NULL; bg_yield = false; }{...} else { desired_dev = NULL; lock->acquiring_dev = NULL; bg_yield = true; }{...} }{...} *out_desired_dev = desired_dev; return bg_yield; }{ ... } //Clear the LOCK bit and trigger a rescheduling. IRAM_ATTR static inline void acquire_end_core(spi_bus_lock_dev_t *dev_handle) { spi_bus_lock_t* lock = dev_handle->parent; spi_bus_lock_dev_t* desired_dev = NULL; //For this critical section, search `@note 1` in this file, to know details portENTER_CRITICAL_SAFE(&s_spinlock); uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK); bool invoke_bg = !schedule_core(lock, status, &desired_dev); portEXIT_CRITICAL_SAFE(&s_spinlock); if (invoke_bg) { bg_enable(lock); }{...} else if (desired_dev) { resume_dev(desired_dev); }{...} else if (status & WEAK_BG_FLAG) { bg_enable(lock); }{...} }{ ... } // Move the REQ bits to corresponding PEND bits. Must be called by acquiring processor. // Have no side effects on the acquiring device/processor. SPI_BUS_LOCK_ISR_ATTR static inline void update_pend_core(spi_bus_lock_t *lock, uint32_t status) { uint32_t active_req_bits = status & REQ_MASK; #if PENDING_SHIFT > REQ_SHIFT uint32_t pending_mask = active_req_bits << (PENDING_SHIFT - REQ_SHIFT); #else uint32_t pending_mask = active_req_bits >> (REQ_SHIFT - PENDING_SHIFT); #endif // We have to set the PEND bits and then clear the REQ bits, since BG bits are using bitwise OR logic, // this will not influence the effectiveness of the BG bits of every device. lock_status_fetch_set(lock, pending_mask); lock_status_fetch_clear(lock, active_req_bits); }{ ... } // Clear the PEND bit (not REQ bit!) of a device, return the suggestion whether we can try to quit the ISR. // Lost the acquiring processor immediately when the BG bits for active device are inactive, indicating by the return value. // Can be called only when ISR is acting as the acquiring processor. SPI_BUS_LOCK_ISR_ATTR static inline bool clear_pend_core(spi_bus_lock_dev_t *dev_handle) { bool finished; spi_bus_lock_t *lock = dev_handle->parent; uint32_t pend_mask = DEV_PEND_MASK(dev_handle); BUS_LOCK_DEBUG_EXECUTE_CHECK(lock_status_fetch(lock) & pend_mask); uint32_t status = lock_status_clear(lock, pend_mask); if (lock->acquiring_dev == dev_handle) { finished = ((status & DEV_REQ_MASK(dev_handle)) == 0); if (finished) { lock->acq_dev_bg_active = false; }{...} }{...} else { finished = (status == 0); }{...} return finished; }{ ... } // Return true if the ISR has already touched the HW, which means previous operations should // be terminated first, before we use the HW again. Otherwise return false. // In either case `in_isr` will be marked as true, until call to `bg_exit_core` with `wip=false` successfully. SPI_BUS_LOCK_ISR_ATTR static inline bool bg_entry_core(spi_bus_lock_t *lock) { BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active); /* * The interrupt is disabled at the entry of ISR to avoid competitive risk as below: * * The `esp_intr_enable` will be called (b) after new BG request is queued (a) in the task; * while `esp_intr_disable` should be called (c) if we check and found the sending queue is empty (d). * If (c) happens after (d), if things happens in this sequence: * (d) -> (a) -> (b) -> (c), the interrupt will be disabled while there's pending BG request in the queue. * * To avoid this, interrupt is disabled here, and re-enabled later if required. (c) -> (d) -> (a) -> (b) -> revert (c) if !d *//* ... */ bg_disable(lock); if (lock->in_isr) { return false; }{...} else { lock->in_isr = true; return true; }{...} }{ ... } // Handle the conditions of status and interrupt, avoiding the ISR being disabled when there is any new coming BG requests. // When called with `wip=true`, means the ISR is performing some operations. Will enable the interrupt again and exit unconditionally. // When called with `wip=false`, will only return `true` when there is no coming BG request. If return value is `false`, the ISR should try again. // Will not change acquiring device. SPI_BUS_LOCK_ISR_ATTR static inline bool bg_exit_core(spi_bus_lock_t *lock, bool wip, BaseType_t *do_yield) { //See comments in `bg_entry_core`, re-enable interrupt disabled in entry if we do need the interrupt if (wip) { bg_enable(lock); BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev || lock->acq_dev_bg_active); return true; }{...} bool ret; uint32_t status = lock_status_fetch(lock); if (lock->acquiring_dev) { if (status & DEV_BG_MASK(lock->acquiring_dev)) { BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acq_dev_bg_active); ret = false; }{...} else { // The request may happen any time, even after we fetched the status. // The value of `acq_dev_bg_active` is random. resume_dev_in_isr(lock->acquiring_dev, do_yield); ret = true; }{...} }{...} else { BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active); ret = !(status & BG_MASK); }{...} if (ret) { //when successfully exit, but no transaction done, mark BG as inactive lock->in_isr = false; }{...} return ret; }{ ... } IRAM_ATTR static inline void dev_wait_prepare(spi_bus_lock_dev_t *dev_handle) { xSemaphoreTake(dev_handle->semphr, 0); }{ ... } SPI_BUS_LOCK_ISR_ATTR static inline esp_err_t dev_wait(spi_bus_lock_dev_t *dev_handle, TickType_t wait) { BaseType_t ret = xSemaphoreTake(dev_handle->semphr, wait); if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; }{...} return ESP_OK; }{ ... } /******************************************************************************* * Initialization & Deinitialization ******************************************************************************//* ... */ esp_err_t spi_bus_init_lock(spi_bus_lock_handle_t *out_lock, const spi_bus_lock_config_t *config) { spi_bus_lock_t* lock = (spi_bus_lock_t*)calloc(1, sizeof(spi_bus_lock_t)); if (lock == NULL) { return ESP_ERR_NO_MEM; }{...} lock_status_init(lock); lock->acquiring_dev = NULL; lock->last_dev = NULL; lock->periph_cs_num = config->cs_num; lock->host_id = config->host_id; *out_lock = lock; return ESP_OK; }{ ... } void spi_bus_deinit_lock(spi_bus_lock_handle_t lock) { for (int i = 0; i < DEV_NUM_MAX; i++) { assert(atomic_load(&lock->dev[i]) == (intptr_t)NULL); }{...} free(lock); }{ ... } static int try_acquire_free_dev(spi_bus_lock_t *lock, bool cs_required) { if (cs_required) { int i; for (i = 0; i < lock->periph_cs_num; i++) { intptr_t null = (intptr_t) NULL; //use 1 to occupy the slot, actual setup comes later if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) { break; }{...} }{...} return ((i == lock->periph_cs_num) ? -1 : i); }{...} else { int i; for (i = DEV_NUM_MAX - 1; i >= 0; i--) { intptr_t null = (intptr_t) NULL; //use 1 to occupy the slot, actual setup comes later if (atomic_compare_exchange_strong(&lock->dev[i], &null, (intptr_t) 1)) { break; }{...} }{...} return i; }{...} }{ ... } esp_err_t spi_bus_lock_register_dev(spi_bus_lock_handle_t lock, spi_bus_lock_dev_config_t *config, spi_bus_lock_dev_handle_t *out_dev_handle) { if (lock == NULL) { return ESP_ERR_INVALID_ARG; }{...} int id = try_acquire_free_dev(lock, config->flags & SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED); if (id == -1) { return ESP_ERR_NOT_SUPPORTED; }{...} spi_bus_lock_dev_t* dev_lock = (spi_bus_lock_dev_t*)heap_caps_calloc(1, sizeof(spi_bus_lock_dev_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (dev_lock == NULL) { return ESP_ERR_NO_MEM; }{...} dev_lock->semphr = xSemaphoreCreateBinary(); if (dev_lock->semphr == NULL) { free(dev_lock); atomic_store(&lock->dev[id], (intptr_t)NULL); return ESP_ERR_NO_MEM; }{...} dev_lock->parent = lock; dev_lock->mask = DEV_MASK(id); ESP_LOGV(TAG, "device registered on bus %d slot %d.", lock->host_id, id); atomic_store(&lock->dev[id], (intptr_t)dev_lock); *out_dev_handle = dev_lock; return ESP_OK; }{ ... } void spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle) { int id = dev_lock_get_id(dev_handle); spi_bus_lock_t* lock = dev_handle->parent; BUS_LOCK_DEBUG_EXECUTE_CHECK(atomic_load(&lock->dev[id]) == (intptr_t)dev_handle); if (lock->last_dev == dev_handle) { lock->last_dev = NULL; }{...} atomic_store(&lock->dev[id], (intptr_t)NULL); if (dev_handle->semphr) { vSemaphoreDelete(dev_handle->semphr); }{...} free(dev_handle); }{ ... } IRAM_ATTR static inline int mask_get_id(uint32_t mask) { return ID_DEV_MASK(mask); }{ ... } IRAM_ATTR static inline int dev_lock_get_id(spi_bus_lock_dev_t *dev_lock) { return mask_get_id(dev_lock->mask); }{ ... } void spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock, bg_ctrl_func_t bg_enable, bg_ctrl_func_t bg_disable, void *arg) { lock->bg_enable = bg_enable; lock->bg_disable = bg_disable; lock->bg_arg = arg; }{ ... } IRAM_ATTR int spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle) { return (dev_handle ? dev_lock_get_id(dev_handle) : -1); }{ ... } //will be called when cache disabled IRAM_ATTR bool spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle) { spi_bus_lock_dev_t* last_dev = dev_handle->parent->last_dev; dev_handle->parent->last_dev = dev_handle; if (last_dev != dev_handle) { int last_dev_id = (last_dev ? dev_lock_get_id(last_dev) : -1); ESP_DRAM_LOGV(TAG, "SPI dev changed from %d to %d", last_dev_id, dev_lock_get_id(dev_handle)); }{...} return (dev_handle != last_dev); }{ ... } /******************************************************************************* * Acquiring service ******************************************************************************//* ... */ IRAM_ATTR esp_err_t spi_bus_lock_acquire_start(spi_bus_lock_dev_t *dev_handle, TickType_t wait) { ESP_RETURN_ON_FALSE_ISR(wait == portMAX_DELAY, ESP_ERR_INVALID_ARG, TAG, "timeout other than portMAX_DELAY not supported"); spi_bus_lock_t* lock = dev_handle->parent; // Clear the semaphore before checking dev_wait_prepare(dev_handle); if (!acquire_core(dev_handle)) { //block until becoming the acquiring processor (help by previous acquiring processor) esp_err_t err = dev_wait(dev_handle, wait); //TODO: add timeout handling here. if (err != ESP_OK) { return err; }{...} }{...} ESP_DRAM_LOGV(TAG, "dev %d acquired.", dev_lock_get_id(dev_handle)); BUS_LOCK_DEBUG_EXECUTE_CHECK(lock->acquiring_dev == dev_handle); //When arrives at here, requests of this device should already be handled uint32_t status = lock_status_fetch(lock); (void) status; BUS_LOCK_DEBUG_EXECUTE_CHECK((status & DEV_BG_MASK(dev_handle)) == 0); return ESP_OK; }{ ... } IRAM_ATTR esp_err_t spi_bus_lock_acquire_end(spi_bus_lock_dev_t *dev_handle) { //release the bus spi_bus_lock_t* lock = dev_handle->parent; ESP_RETURN_ON_FALSE_ISR(lock->acquiring_dev == dev_handle, ESP_ERR_INVALID_STATE, TAG, "Cannot release a lock that hasn't been acquired."); acquire_end_core(dev_handle); ESP_LOGV(TAG, "dev %d released.", dev_lock_get_id(dev_handle)); return ESP_OK; }{ ... } SPI_BUS_LOCK_ISR_ATTR spi_bus_lock_dev_handle_t spi_bus_lock_get_acquiring_dev(spi_bus_lock_t *lock) { return lock->acquiring_dev; }{ ... } /******************************************************************************* * BG (background operation) service ******************************************************************************//* ... */ SPI_BUS_LOCK_ISR_ATTR bool spi_bus_lock_bg_entry(spi_bus_lock_t* lock) { return bg_entry_core(lock); }{ ... } SPI_BUS_LOCK_ISR_ATTR bool spi_bus_lock_bg_exit(spi_bus_lock_t* lock, bool wip, BaseType_t* do_yield) { return bg_exit_core(lock, wip, do_yield); }{ ... } SPI_BUSLOCK_ATTR esp_err_t spi_bus_lock_bg_request(spi_bus_lock_dev_t *dev_handle) { req_core(dev_handle); return ESP_OK; }{ ... } IRAM_ATTR esp_err_t spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle, TickType_t wait) { spi_bus_lock_t *lock = dev_handle->parent; ESP_RETURN_ON_FALSE_ISR(lock->acquiring_dev == dev_handle, ESP_ERR_INVALID_STATE, TAG, "Cannot wait for a device that is not acquired"); ESP_RETURN_ON_FALSE_ISR(wait == portMAX_DELAY, ESP_ERR_INVALID_ARG, TAG, "timeout other than portMAX_DELAY not supported"); // If no BG bits active, skip quickly. This is ensured by `spi_bus_lock_wait_bg_done` // cannot be executed with `bg_request` on the same device concurrently. if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) { // Clear the semaphore before checking dev_wait_prepare(dev_handle); if (lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) { //block until becoming the acquiring processor (help by previous acquiring processor) esp_err_t err = dev_wait(dev_handle, wait); //TODO: add timeout handling here. if (err != ESP_OK) { return err; }{...} }{...} }{...} BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acq_dev_bg_active); BUS_LOCK_DEBUG_EXECUTE_CHECK((lock_status_fetch(lock) & DEV_BG_MASK(dev_handle)) == 0); return ESP_OK; }{ ... } SPI_BUS_LOCK_ISR_ATTR bool spi_bus_lock_bg_clear_req(spi_bus_lock_dev_t *dev_handle) { bool finished = clear_pend_core(dev_handle); ESP_EARLY_LOGV(TAG, "dev %d served from bg.", dev_lock_get_id(dev_handle)); return finished; }{ ... } SPI_BUS_LOCK_ISR_ATTR bool spi_bus_lock_bg_check_dev_acq(spi_bus_lock_t *lock, spi_bus_lock_dev_handle_t *out_dev_lock) { BUS_LOCK_DEBUG_EXECUTE_CHECK(!lock->acquiring_dev); uint32_t status = lock_status_fetch(lock); return schedule_core(lock, status, out_dev_lock); }{ ... } SPI_BUS_LOCK_ISR_ATTR bool spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_t *dev_lock) { spi_bus_lock_t* lock = dev_lock->parent; uint32_t status = lock_status_fetch(lock); uint32_t dev_status = status & dev_lock->mask; // move REQ bits of all device to corresponding PEND bits. // To reduce executing time, only done when the REQ bit of the calling device is set. if (dev_status & REQ_MASK) { update_pend_core(lock, status); return true; }{...} else { return dev_status & PEND_MASK; }{...} }{ ... } SPI_BUS_LOCK_ISR_ATTR bool spi_bus_lock_bg_req_exist(spi_bus_lock_t *lock) { uint32_t status = lock_status_fetch(lock); return status & BG_MASK; }{ ... } /******************************************************************************* * Static variables of the locks of the main flash ******************************************************************************//* ... */ #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS static spi_bus_lock_dev_t lock_main_flash_dev; static spi_bus_lock_t main_spi_bus_lock = { /* * the main bus cache is permanently required, this flag is set here and never clear so that the * cache will always be enabled if acquiring devices yield. *//* ... */ .status = ATOMIC_VAR_INIT(WEAK_BG_FLAG), .acquiring_dev = NULL, .dev = {ATOMIC_VAR_INIT((intptr_t)&lock_main_flash_dev)}, .new_req = 0, .periph_cs_num = SOC_SPI_PERIPH_CS_NUM(0), }{...}; const spi_bus_lock_handle_t g_main_spi_bus_lock = &main_spi_bus_lock; static StaticSemaphore_t main_flash_semphr; static spi_bus_lock_dev_t lock_main_flash_dev = { .semphr = NULL, .parent = &main_spi_bus_lock, .mask = DEV_MASK(0), }{...}; const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = &lock_main_flash_dev; esp_err_t spi_bus_lock_init_main_dev(void) { g_spi_lock_main_flash_dev->semphr = xSemaphoreCreateBinaryStatic(&main_flash_semphr); if (g_spi_lock_main_flash_dev->semphr == NULL) { return ESP_ERR_NO_MEM; }{...} return ESP_OK; }{...} /* ... */#else //CONFIG_SPI_FLASH_SHARE_SPI1_BUS //when the dev lock is not initialized, point to NULL const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev = NULL; /* ... */ #endif
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.