Select one of the symbols to view example projects that use it.
 
Outline
#include <string.h>
#include "sdkconfig.h"
#include "stdatomic.h"
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_check.h"
#include "esp_cache.h"
#include "esp_rom_gpio.h"
#include "esp_heap_caps.h"
#include "soc/spi_periph.h"
#include "driver/spi_master.h"
#include "driver/gpio.h"
#include "esp_private/gpio.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/spi_common_internal.h"
#include "esp_private/spi_share_hw_ctrl.h"
#include "esp_private/esp_cache_private.h"
#include "esp_private/sleep_retention.h"
#include "esp_dma_utils.h"
#include "hal/spi_hal.h"
#include "hal/gpio_hal.h"
#include "soc/dport_reg.h"
SPI_TAG
#define SPI_CHECK
#define FUNC_GPIO
spicommon_bus_context_t
s_mainbus
bus_ctx
#define SPI_GDMA_NEW_CHANNEL
#define SPI_GDMA_NEW_CHANNEL
spi_dma_chan_enabled
spi_dma_spinlock
is_valid_host(spi_host_device_t)
spicommon_irqsource_for_host(spi_host_device_t)
spicommon_irqdma_source_for_host(spi_host_device_t)
alloc dma periph
claim_dma_chan(int, uint32_t *)
connect_spi_and_dma(spi_host_device_t, int)
alloc_dma_chan(spi_host_device_t, spi_dma_chan_t, spi_dma_ctx_t *)
spicommon_dma_chan_alloc(spi_host_device_t, spi_dma_chan_t, spi_dma_ctx_t **)
spicommon_dma_desc_alloc(spi_dma_ctx_t *, int, int *)
spicommon_dma_desc_setup_link(spi_dma_desc_t *, const void *, int, bool)
free dma periph
spicommon_dma_chan_free(spi_dma_ctx_t *)
IO general
check_iomux_pins_quad(spi_host_device_t, const spi_bus_config_t *)
bus_uses_iomux_pins(spi_host_device_t, const spi_bus_config_t *)
bus_iomux_pins_set_quad(spi_host_device_t, const spi_bus_config_t *)
bus_iomux_pins_set(spi_host_device_t, const spi_bus_config_t *)
spicommon_bus_initialize_io(spi_host_device_t, const spi_bus_config_t *, uint32_t, uint32_t *)
spicommon_bus_free_io_cfg(const spi_bus_config_t *)
spicommon_cs_initialize(spi_host_device_t, int, int, int)
spicommon_cs_free_io(int)
spicommon_bus_using_iomux(spi_host_device_t)
spi_bus_main_set_lock(spi_bus_lock_handle_t)
spi_bus_lock_get_by_id(spi_host_device_t)
master bus init
spi_bus_initialize(spi_host_device_t, const spi_bus_config_t *, spi_dma_chan_t)
spi_bus_dma_memory_alloc(spi_host_device_t, size_t, uint32_t)
spi_bus_get_attr(spi_host_device_t)
spi_bus_get_dma_ctx(spi_host_device_t)
spi_bus_free(spi_host_device_t)
spi_bus_register_destroy_func(spi_host_device_t, spi_destroy_func_t, void *)
dmaworkaround_channels_busy
dmaworkaround_cb
dmaworkaround_cb_arg
dmaworkaround_mux
dmaworkaround_waiting_for_chan
spicommon_dmaworkaround_req_reset(int, dmaworkaround_cb_t, void *)
spicommon_dmaworkaround_reset_in_progress()
spicommon_dmaworkaround_idle(int)
spicommon_dmaworkaround_transfer_active(int)
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/esp_driver_spi/src/gpspi/spi_common.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 *//* ... */ #include <string.h> #include "sdkconfig.h" #include "stdatomic.h" #include "esp_types.h" #include "esp_attr.h" #include "esp_check.h" #include "esp_cache.h" #include "esp_rom_gpio.h" #include "esp_heap_caps.h" #include "soc/spi_periph.h" #include "driver/spi_master.h" #include "driver/gpio.h" #include "esp_private/gpio.h" #include "esp_private/periph_ctrl.h" #include "esp_private/spi_common_internal.h" #include "esp_private/spi_share_hw_ctrl.h" #include "esp_private/esp_cache_private.h" #include "esp_private/sleep_retention.h" #include "esp_dma_utils.h" #include "hal/spi_hal.h" #include "hal/gpio_hal.h"21 includes #if CONFIG_IDF_TARGET_ESP32 #include "soc/dport_reg.h" #endif static const char *SPI_TAG = "spi"; #define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, SPI_TAG, str) #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \ SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \ }{...} else { \ SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \ }{...} ... #define SPI_MAIN_BUS_DEFAULT() { \ .host_id = 0, \ .bus_attr = { \ .max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE, \ }{...}, \ }{...} #define FUNC_GPIO PIN_FUNC_GPIO typedef struct { int host_id; _lock_t mutex; // mutex for controller spi_destroy_func_t destroy_func; void* destroy_arg; spi_bus_attr_t bus_attr; spi_dma_ctx_t *dma_ctx; #if SOC_GDMA_SUPPORTED gdma_channel_handle_t tx_channel; gdma_channel_handle_t rx_channel;/* ... */ #endif }{ ... } spicommon_bus_context_t; static spicommon_bus_context_t s_mainbus = SPI_MAIN_BUS_DEFAULT(); static spicommon_bus_context_t* bus_ctx[SOC_SPI_PERIPH_NUM] = {&s_mainbus}; #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS /* The lock for the share SPI1 bus is registered here in a constructor due to need to access the context This way we are able to decouple the SPI-flash driver from the spi-master driver *//* ... */ static __attribute__((constructor)) void spi_bus_lock_init_main_bus(void) { /* Initialize bus context about the main SPI bus lock, called during chip startup. */ spi_bus_main_set_lock(g_main_spi_bus_lock); }{...} /* ... */#endif #if SOC_GDMA_SUPPORTED //NOTE!! If both A and B are not defined, '#if (A==B)' is true, because GCC use 0 stand for undefined symbol #if defined(SOC_GDMA_BUS_AXI) && (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AXI) #define SPI_GDMA_NEW_CHANNEL gdma_new_axi_channel #elif defined(SOC_GDMA_BUS_AHB) && (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AHB) #define SPI_GDMA_NEW_CHANNEL gdma_new_ahb_channel #endif /* ... */ #else //Each bit stands for 1 dma channel, BIT(0) should be used for SPI1 static uint8_t spi_dma_chan_enabled = 0; static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;/* ... */ #endif //!SOC_GDMA_SUPPORTED static inline bool is_valid_host(spi_host_device_t host) { #if (SOC_SPI_PERIPH_NUM == 2) return host >= SPI1_HOST && host <= SPI2_HOST; #elif (SOC_SPI_PERIPH_NUM == 3) return host >= SPI1_HOST && host <= SPI3_HOST; #endif }{ ... } int spicommon_irqsource_for_host(spi_host_device_t host) { return spi_periph_signal[host].irq; }{ ... } int spicommon_irqdma_source_for_host(spi_host_device_t host) { return spi_periph_signal[host].irq_dma; }{ ... } //----------------------------------------------------------alloc dma periph-------------------------------------------------------// #if !SOC_GDMA_SUPPORTED #if SPI_LL_DMA_SHARED static inline periph_module_t get_dma_periph(int dma_chan) { assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM); if (dma_chan == 1) { return PERIPH_SPI2_DMA_MODULE; }{...} else if (dma_chan == 2) { return PERIPH_SPI3_DMA_MODULE; }{...} else { abort(); }{...} }{...} /* ... */#endif static bool claim_dma_chan(int dma_chan, uint32_t *out_actual_dma_chan) { bool ret = false; portENTER_CRITICAL(&spi_dma_spinlock); bool is_used = (BIT(dma_chan) & spi_dma_chan_enabled); if (!is_used) { spi_dma_chan_enabled |= BIT(dma_chan); #if SPI_LL_DMA_SHARED PERIPH_RCC_ACQUIRE_ATOMIC(get_dma_periph(dma_chan), ref_count) { //esp32s2: dma_chan index is same as spi host_id, no matter dma_chan_auto or not if (ref_count == 0) { spi_dma_ll_enable_bus_clock(dma_chan, true); spi_dma_ll_reset_register(dma_chan); }{...} }{...} #else/* ... */ SPI_COMMON_RCC_CLOCK_ATOMIC() { //esp32: have only one spi_dma spi_dma_ll_enable_bus_clock(dma_chan, true); spi_dma_ll_reset_register(dma_chan); }{...} #endif/* ... */ *out_actual_dma_chan = dma_chan; ret = true; }{...} portEXIT_CRITICAL(&spi_dma_spinlock); return ret; }{ ... } static void connect_spi_and_dma(spi_host_device_t host, int dma_chan) { #if CONFIG_IDF_TARGET_ESP32 DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2)); #elif CONFIG_IDF_TARGET_ESP32S2 //On ESP32S2, each SPI controller has its own DMA channel. So there is no need to connect them. #endif }{ ... } static esp_err_t alloc_dma_chan(spi_host_device_t host_id, spi_dma_chan_t dma_chan, spi_dma_ctx_t *dma_ctx) { assert(is_valid_host(host_id)); #if CONFIG_IDF_TARGET_ESP32 assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO); #elif CONFIG_IDF_TARGET_ESP32S2 assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO); #endif esp_err_t ret = ESP_OK; bool success = false; uint32_t actual_dma_chan = 0; if (dma_chan == SPI_DMA_CH_AUTO) { #if CONFIG_IDF_TARGET_ESP32 for (int i = 1; i < SOC_SPI_DMA_CHAN_NUM + 1; i++) { success = claim_dma_chan(i, &actual_dma_chan); if (success) { break; }{...} }{...} #elif/* ... */ CONFIG_IDF_TARGET_ESP32S2 //On ESP32S2, each SPI controller has its own DMA channel success = claim_dma_chan(host_id, &actual_dma_chan);/* ... */ #endif //#if CONFIG_IDF_TARGET_XXX }{...} else { success = claim_dma_chan((int)dma_chan, &actual_dma_chan); }{...} //On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same dma_ctx->tx_dma_chan.chan_id = actual_dma_chan; dma_ctx->rx_dma_chan.chan_id = actual_dma_chan; dma_ctx->tx_dma_chan.host_id = host_id; dma_ctx->rx_dma_chan.host_id = host_id; dma_ctx->tx_dma_chan.dir = DMA_CHANNEL_DIRECTION_TX; dma_ctx->rx_dma_chan.dir = DMA_CHANNEL_DIRECTION_RX; if (!success) { SPI_CHECK(false, "no available dma channel", ESP_ERR_NOT_FOUND); }{...} connect_spi_and_dma(host_id, actual_dma_chan); spi_dma_enable_burst(dma_ctx->tx_dma_chan, true, true); spi_dma_enable_burst(dma_ctx->rx_dma_chan, true, true); return ret; }{ ... } /* ... */#else //SOC_GDMA_SUPPORTED static esp_err_t alloc_dma_chan(spi_host_device_t host_id, spi_dma_chan_t dma_chan, spi_dma_ctx_t *dma_ctx) { assert(is_valid_host(host_id)); assert(dma_chan == SPI_DMA_CH_AUTO); esp_err_t ret = ESP_OK; if (dma_chan == SPI_DMA_CH_AUTO) { gdma_channel_alloc_config_t tx_alloc_config = { .flags.reserve_sibling = 1, .direction = GDMA_CHANNEL_DIRECTION_TX, }{...}; ESP_RETURN_ON_ERROR(SPI_GDMA_NEW_CHANNEL(&tx_alloc_config, &dma_ctx->tx_dma_chan), SPI_TAG, "alloc gdma tx failed"); gdma_channel_alloc_config_t rx_alloc_config = { .direction = GDMA_CHANNEL_DIRECTION_RX, .sibling_chan = dma_ctx->tx_dma_chan, }{...}; ESP_RETURN_ON_ERROR(SPI_GDMA_NEW_CHANNEL(&rx_alloc_config, &dma_ctx->rx_dma_chan), SPI_TAG, "alloc gdma rx failed"); if (host_id == SPI2_HOST) { gdma_connect(dma_ctx->tx_dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2)); gdma_connect(dma_ctx->rx_dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2)); }{...} #if (SOC_SPI_PERIPH_NUM >= 3) else if (host_id == SPI3_HOST) { gdma_connect(dma_ctx->tx_dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3)); gdma_connect(dma_ctx->rx_dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3)); }{...} /* ... */#endif // TODO: add support to allow SPI transfer PSRAM buffer gdma_transfer_config_t trans_cfg = { .max_data_burst_size = 16, .access_ext_mem = false, }{...}; ESP_RETURN_ON_ERROR(gdma_config_transfer(dma_ctx->tx_dma_chan, &trans_cfg), SPI_TAG, "config gdma tx transfer failed"); ESP_RETURN_ON_ERROR(gdma_config_transfer(dma_ctx->rx_dma_chan, &trans_cfg), SPI_TAG, "config gdma rx transfer failed"); }{...} return ret; }{...} /* ... */#endif //#if !SOC_GDMA_SUPPORTED esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, spi_dma_ctx_t **out_dma_ctx) { assert(is_valid_host(host_id)); #if CONFIG_IDF_TARGET_ESP32 assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO); #elif CONFIG_IDF_TARGET_ESP32S2 assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO); #endif esp_err_t ret = ESP_OK; spi_dma_ctx_t *dma_ctx = (spi_dma_ctx_t *)calloc(1, sizeof(spi_dma_ctx_t)); if (!dma_ctx) { ret = ESP_ERR_NO_MEM; goto cleanup; }{...} ret = alloc_dma_chan(host_id, dma_chan, dma_ctx); if (ret != ESP_OK) { goto cleanup; }{...} *out_dma_ctx = dma_ctx; return ret; cleanup: free(dma_ctx); return ret; }{ ... } esp_err_t spicommon_dma_desc_alloc(spi_dma_ctx_t *dma_ctx, int cfg_max_sz, int *actual_max_sz) { int dma_desc_ct = (cfg_max_sz + DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED; if (dma_desc_ct == 0) { dma_desc_ct = 1; //default to 4k when max is not given }{...} dma_ctx->dmadesc_tx = heap_caps_aligned_calloc(DMA_DESC_MEM_ALIGN_SIZE, 1, sizeof(spi_dma_desc_t) * dma_desc_ct, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL); dma_ctx->dmadesc_rx = heap_caps_aligned_calloc(DMA_DESC_MEM_ALIGN_SIZE, 1, sizeof(spi_dma_desc_t) * dma_desc_ct, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL); if (dma_ctx->dmadesc_tx == NULL || dma_ctx->dmadesc_rx == NULL) { if (dma_ctx->dmadesc_tx) { free(dma_ctx->dmadesc_tx); dma_ctx->dmadesc_tx = NULL; }{...} if (dma_ctx->dmadesc_rx) { free(dma_ctx->dmadesc_rx); dma_ctx->dmadesc_rx = NULL; }{...} return ESP_ERR_NO_MEM; }{...} dma_ctx->dma_desc_num = dma_desc_ct; *actual_max_sz = dma_desc_ct * DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED; return ESP_OK; }{ ... } void IRAM_ATTR spicommon_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx) { dmadesc = ADDR_DMA_2_CPU(dmadesc); int n = 0; while (len) { int dmachunklen = len; if (dmachunklen > DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED) { dmachunklen = DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED; }{...} if (is_rx) { //Receive needs DMA length rounded to next 32-bit boundary dmadesc[n].dw0.size = (dmachunklen + 3) & (~3); }{...} else { dmadesc[n].dw0.size = dmachunklen; dmadesc[n].dw0.length = dmachunklen; }{...} dmadesc[n].buffer = (uint8_t *)data; dmadesc[n].dw0.suc_eof = 0; dmadesc[n].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; dmadesc[n].next = ADDR_CPU_2_DMA(&dmadesc[n + 1]); len -= dmachunklen; data += dmachunklen; n++; }{...} dmadesc[n - 1].dw0.suc_eof = 1; //Mark last DMA desc as end of stream. dmadesc[n - 1].next = NULL; }{ ... } alloc dma periph//----------------------------------------------------------free dma periph-------------------------------------------------------// esp_err_t spicommon_dma_chan_free(spi_dma_ctx_t *dma_ctx) { assert(dma_ctx); #if !SOC_GDMA_SUPPORTED //On ESP32S2, each SPI controller has its own DMA channel int dma_chan = dma_ctx->tx_dma_chan.chan_id; assert(spi_dma_chan_enabled & BIT(dma_chan)); portENTER_CRITICAL(&spi_dma_spinlock); spi_dma_chan_enabled &= ~BIT(dma_chan); #if SPI_LL_DMA_SHARED PERIPH_RCC_RELEASE_ATOMIC(get_dma_periph(dma_chan), ref_count) { if (ref_count == 0) { spi_dma_ll_enable_bus_clock(dma_ctx->tx_dma_chan.host_id, false); }{...} }{...} #else/* ... */ SPI_COMMON_RCC_CLOCK_ATOMIC() { spi_dma_ll_enable_bus_clock(dma_ctx->tx_dma_chan.host_id, false); }{...} #endif/* ... */ portEXIT_CRITICAL(&spi_dma_spinlock); /* ... */ #else //SOC_GDMA_SUPPORTED if (dma_ctx->rx_dma_chan) { gdma_disconnect(dma_ctx->rx_dma_chan); gdma_del_channel(dma_ctx->rx_dma_chan); }{...} if (dma_ctx->tx_dma_chan) { gdma_disconnect(dma_ctx->tx_dma_chan); gdma_del_channel(dma_ctx->tx_dma_chan); }{...} #endif/* ... */ free(dma_ctx); return ESP_OK; }{ ... } free dma periph//----------------------------------------------------------IO general-------------------------------------------------------// #if SOC_SPI_SUPPORT_OCT static bool check_iomux_pins_oct(spi_host_device_t host, const spi_bus_config_t* bus_config) { if (host != SPI2_HOST) { return false; }{...} int io_nums[] = {bus_config->data0_io_num, bus_config->data1_io_num, bus_config->data2_io_num, bus_config->data3_io_num, bus_config->sclk_io_num, bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num }{...}; int io_mux_nums[] = {SPI2_IOMUX_PIN_NUM_MOSI_OCT, SPI2_IOMUX_PIN_NUM_MISO_OCT, SPI2_IOMUX_PIN_NUM_WP_OCT, SPI2_IOMUX_PIN_NUM_HD_OCT, SPI2_IOMUX_PIN_NUM_CLK_OCT, SPI2_IOMUX_PIN_NUM_IO4_OCT, SPI2_IOMUX_PIN_NUM_IO5_OCT, SPI2_IOMUX_PIN_NUM_IO6_OCT, SPI2_IOMUX_PIN_NUM_IO7_OCT }{...}; for (size_t i = 0; i < sizeof(io_nums) / sizeof(io_nums[0]); i++) { if (io_nums[i] >= 0 && io_nums[i] != io_mux_nums[i]) { return false; }{...} }{...} return true; }{...} /* ... */#endif static bool check_iomux_pins_quad(spi_host_device_t host, const spi_bus_config_t* bus_config) { if (bus_config->sclk_io_num >= 0 && bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) { return false; }{...} if (bus_config->quadwp_io_num >= 0 && bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) { return false; }{...} if (bus_config->quadhd_io_num >= 0 && bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) { return false; }{...} if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) { return false; }{...} if (bus_config->miso_io_num >= 0 && bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) { return false; }{...} return true; }{ ... } static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config) { //Check if SPI pins could be routed to iomux. #if SOC_SPI_SUPPORT_OCT //The io mux pins available for Octal mode is not the same as the ones we use for non-Octal mode. if ((bus_config->flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL) { return check_iomux_pins_oct(host, bus_config); }{...} #endif/* ... */ return check_iomux_pins_quad(host, bus_config); }{ ... } #if SOC_SPI_SUPPORT_OCT static void bus_iomux_pins_set_oct(spi_host_device_t host, const spi_bus_config_t* bus_config) { assert(host == SPI2_HOST); int io_nums[] = {bus_config->data0_io_num, bus_config->data1_io_num, bus_config->data2_io_num, bus_config->data3_io_num, bus_config->sclk_io_num, bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num }{...}; int io_signals[] = {spi_periph_signal[host].spid_in, spi_periph_signal[host].spiq_in, spi_periph_signal[host].spiwp_in, spi_periph_signal[host].spihd_in, spi_periph_signal[host].spiclk_in, spi_periph_signal[host].spid4_out, spi_periph_signal[host].spid5_out, spi_periph_signal[host].spid6_out, spi_periph_signal[host].spid7_out }{...}; for (size_t i = 0; i < sizeof(io_nums) / sizeof(io_nums[0]); i++) { if (io_nums[i] > 0) { gpio_iomux_in(io_nums[i], io_signals[i]); // In Octal mode use function channel 2 gpio_iomux_out(io_nums[i], SPI2_FUNC_NUM_OCT, false); }{...} }{...} }{...} /* ... */#endif //SOC_SPI_SUPPORT_OCT static void bus_iomux_pins_set_quad(spi_host_device_t host, const spi_bus_config_t* bus_config) { if (bus_config->mosi_io_num >= 0) { gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in); gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false); }{...} if (bus_config->miso_io_num >= 0) { gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in); gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false); }{...} if (bus_config->quadwp_io_num >= 0) { gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in); gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false); }{...} if (bus_config->quadhd_io_num >= 0) { gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in); gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false); }{...} if (bus_config->sclk_io_num >= 0) { gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in); gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false); }{...} }{ ... } static void bus_iomux_pins_set(spi_host_device_t host, const spi_bus_config_t* bus_config) { #if SOC_SPI_SUPPORT_OCT if ((bus_config->flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL) { bus_iomux_pins_set_oct(host, bus_config); return; }{...} #endif/* ... */ bus_iomux_pins_set_quad(host, bus_config); }{ ... } /* Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value, it should be able to be initialized. *//* ... */ esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, uint32_t flags, uint32_t* flags_o) { #if SOC_SPI_SUPPORT_OCT // In the driver of previous version, spi data4 ~ spi data7 are not in spi_bus_config_t struct. So the new-added pins come as 0 // if they are not really set. Add this boolean variable to check if the user has set spi data4 ~spi data7 pins . bool io4_7_is_blank = !bus_config->data4_io_num && !bus_config->data5_io_num && !bus_config->data6_io_num && !bus_config->data7_io_num; // This boolean variable specifies if user sets pins used for octal mode (users can set spi data4 ~ spi data7 to -1). bool io4_7_enabled = !io4_7_is_blank && bus_config->data4_io_num >= 0 && bus_config->data5_io_num >= 0 && bus_config->data6_io_num >= 0 && bus_config->data7_io_num >= 0; SPI_CHECK((flags & SPICOMMON_BUSFLAG_MASTER) || !((flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL), "Octal SPI mode / OPI mode only works when SPI is used as Master", ESP_ERR_INVALID_ARG); SPI_CHECK(host == SPI2_HOST || !((flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL), "Only SPI2 supports Octal SPI mode / OPI mode", ESP_ERR_INVALID_ARG);/* ... */ #endif //SOC_SPI_SUPPORT_OCT uint32_t temp_flag = 0; bool miso_need_output; bool mosi_need_output; bool sclk_need_output; if ((flags & SPICOMMON_BUSFLAG_MASTER) != 0) { //initial for master miso_need_output = ((flags & SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false; mosi_need_output = true; sclk_need_output = true; }{...} else { //initial for slave miso_need_output = true; mosi_need_output = ((flags & SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false; sclk_need_output = false; }{...} const bool wp_need_output = true; const bool hd_need_output = true; //check pin capabilities if (bus_config->sclk_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_SCLK; SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output); }{...} if (bus_config->quadwp_io_num >= 0) { SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output); }{...} if (bus_config->quadhd_io_num >= 0) { SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output); }{...} #if SOC_SPI_SUPPORT_OCT const bool io4_need_output = true; const bool io5_need_output = true; const bool io6_need_output = true; const bool io7_need_output = true; // set flags for OCTAL mode according to the existence of spi data4 ~ spi data7 if (io4_7_enabled) { temp_flag |= SPICOMMON_BUSFLAG_IO4_IO7; if (bus_config->data4_io_num >= 0) { SPI_CHECK_PIN(bus_config->data4_io_num, "spi data4", io4_need_output); }{...} if (bus_config->data5_io_num >= 0) { SPI_CHECK_PIN(bus_config->data5_io_num, "spi data5", io5_need_output); }{...} if (bus_config->data6_io_num >= 0) { SPI_CHECK_PIN(bus_config->data6_io_num, "spi data6", io6_need_output); }{...} if (bus_config->data7_io_num >= 0) { SPI_CHECK_PIN(bus_config->data7_io_num, "spi data7", io7_need_output); }{...} }{...} #endif/* ... */ //SOC_SPI_SUPPORT_OCT //set flags for QUAD mode according to the existence of wp and hd if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_WPHD; }{...} if (bus_config->mosi_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_MOSI; SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output); }{...} if (bus_config->miso_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_MISO; SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output); }{...} //set flags for DUAL mode according to output-capability of MOSI and MISO pins. if ((bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) && (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num))) { temp_flag |= SPICOMMON_BUSFLAG_DUAL; }{...} //check if the selected pins correspond to the iomux pins of the peripheral bool use_iomux = !(flags & SPICOMMON_BUSFLAG_GPIO_PINS) && bus_uses_iomux_pins(host, bus_config); if (use_iomux) { temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS; }{...} else { temp_flag |= SPICOMMON_BUSFLAG_GPIO_PINS; }{...} uint32_t missing_flag = flags & ~temp_flag; missing_flag &= ~SPICOMMON_BUSFLAG_MASTER; //don't check this flag missing_flag &= ~SPICOMMON_BUSFLAG_SLP_ALLOW_PD; if (missing_flag != 0) { //check pins existence if (missing_flag & SPICOMMON_BUSFLAG_SCLK) { ESP_LOGE(SPI_TAG, "sclk pin required."); }{...} if (missing_flag & SPICOMMON_BUSFLAG_MOSI) { ESP_LOGE(SPI_TAG, "mosi pin required."); }{...} if (missing_flag & SPICOMMON_BUSFLAG_MISO) { ESP_LOGE(SPI_TAG, "miso pin required."); }{...} if (missing_flag & SPICOMMON_BUSFLAG_DUAL) { ESP_LOGE(SPI_TAG, "not both mosi and miso output capable"); }{...} if (missing_flag & SPICOMMON_BUSFLAG_WPHD) { ESP_LOGE(SPI_TAG, "both wp and hd required."); }{...} if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) { ESP_LOGE(SPI_TAG, "not using iomux pins"); }{...} #if SOC_SPI_SUPPORT_OCT if (missing_flag & SPICOMMON_BUSFLAG_IO4_IO7) { ESP_LOGE(SPI_TAG, "spi data4 ~ spi data7 are required."); }{...} #endif/* ... */ SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG); }{...} if (use_iomux) { //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host + 1); bus_iomux_pins_set(host, bus_config); }{...} else { //Use GPIO matrix ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host + 1); if (bus_config->mosi_io_num >= 0) { if (mosi_need_output || (temp_flag & SPICOMMON_BUSFLAG_DUAL)) { gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false); }{...} else { gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT); }{...} esp_rom_gpio_connect_in_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->mosi_io_num]); #endif gpio_func_sel(bus_config->mosi_io_num, FUNC_GPIO); }{...} if (bus_config->miso_io_num >= 0) { if (miso_need_output || (temp_flag & SPICOMMON_BUSFLAG_DUAL)) { gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false); }{...} else { gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT); }{...} esp_rom_gpio_connect_in_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->miso_io_num]); #endif gpio_func_sel(bus_config->miso_io_num, FUNC_GPIO); }{...} if (bus_config->quadwp_io_num >= 0) { gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false); esp_rom_gpio_connect_in_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num]); #endif gpio_func_sel(bus_config->quadwp_io_num, FUNC_GPIO); }{...} if (bus_config->quadhd_io_num >= 0) { gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false); esp_rom_gpio_connect_in_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num]); #endif gpio_func_sel(bus_config->quadhd_io_num, FUNC_GPIO); }{...} if (bus_config->sclk_io_num >= 0) { if (sclk_need_output) { gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false); }{...} else { gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT); }{...} esp_rom_gpio_connect_in_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->sclk_io_num]); #endif gpio_func_sel(bus_config->sclk_io_num, FUNC_GPIO); }{...} #if SOC_SPI_SUPPORT_OCT if ((flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL) { int io_nums[] = {bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num}; uint8_t io_signals[4][2] = {{spi_periph_signal[host].spid4_out, spi_periph_signal[host].spid4_in}, {spi_periph_signal[host].spid5_out, spi_periph_signal[host].spid5_in}, {spi_periph_signal[host].spid6_out, spi_periph_signal[host].spid6_in}, {spi_periph_signal[host].spid7_out, spi_periph_signal[host].spid7_in} }{...}; for (size_t i = 0; i < sizeof(io_nums) / sizeof(io_nums[0]); i++) { if (io_nums[i] >= 0) { gpio_set_direction(io_nums[i], GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(io_nums[i], io_signals[i][0], false, false); esp_rom_gpio_connect_in_signal(io_nums[i], io_signals[i][1], false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[io_nums[i]]); #endif gpio_func_sel(io_nums[i], FUNC_GPIO); }{...} }{...} }{...} #endif/* ... */ //SOC_SPI_SUPPORT_OCT }{...} if (flags_o) { *flags_o = temp_flag; }{...} return ESP_OK; }{ ... } esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg) { int pin_array[] = { bus_cfg->mosi_io_num, bus_cfg->miso_io_num, bus_cfg->sclk_io_num, bus_cfg->quadwp_io_num, bus_cfg->quadhd_io_num, }{...}; for (int i = 0; i < sizeof(pin_array) / sizeof(int); i ++) { const int io = pin_array[i]; if (GPIO_IS_VALID_GPIO(io)) { gpio_reset_pin(io); }{...} }{...} return ESP_OK; }{ ... } void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix) { if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) { //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in); gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false); }{...} else { //Use GPIO matrix if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) { gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false); }{...} else { gpio_set_direction(cs_io_num, GPIO_MODE_INPUT); }{...} if (cs_num == 0) { esp_rom_gpio_connect_in_signal(cs_io_num, spi_periph_signal[host].spics_in, false); }{...} #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[cs_io_num]); #endif gpio_func_sel(cs_io_num, FUNC_GPIO); }{...} }{ ... } void spicommon_cs_free_io(int cs_gpio_num) { assert(GPIO_IS_VALID_GPIO(cs_gpio_num)); gpio_reset_pin(cs_gpio_num); }{ ... } bool spicommon_bus_using_iomux(spi_host_device_t host) { CHECK_IOMUX_PIN(host, spid); CHECK_IOMUX_PIN(host, spiq); CHECK_IOMUX_PIN(host, spiwp); CHECK_IOMUX_PIN(host, spihd); return true; }{ ... } void spi_bus_main_set_lock(spi_bus_lock_handle_t lock) { bus_ctx[0]->bus_attr.lock = lock; }{ ... } spi_bus_lock_handle_t spi_bus_lock_get_by_id(spi_host_device_t host_id) { return bus_ctx[host_id]->bus_attr.lock; }{ ... } #if SOC_SPI_SUPPORT_SLEEP_RETENTION && CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP static esp_err_t s_bus_create_sleep_retention_cb(void *arg) { spicommon_bus_context_t *ctx = arg; return sleep_retention_entries_create(spi_reg_retention_info[ctx->host_id - 1].entry_array, spi_reg_retention_info[ctx->host_id - 1].array_size, REGDMA_LINK_PRI_GPSPI, spi_reg_retention_info[ctx->host_id - 1].module_id); }{...} /* ... */#endif // SOC_SPI_SUPPORT_SLEEP_RETENTIONIO general //----------------------------------------------------------master bus init-------------------------------------------------------// esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config, spi_dma_chan_t dma_chan) { esp_err_t err = ESP_OK; spicommon_bus_context_t *ctx = NULL; spi_bus_attr_t *bus_attr = NULL; SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_ctx[host_id] == NULL, "SPI bus already initialized.", ESP_ERR_INVALID_STATE); #ifdef CONFIG_IDF_TARGET_ESP32 SPI_CHECK(dma_chan >= SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG); #elif CONFIG_IDF_TARGET_ESP32S2 SPI_CHECK(dma_chan == SPI_DMA_DISABLED || dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG); #elif SOC_GDMA_SUPPORTED SPI_CHECK(dma_chan == SPI_DMA_DISABLED || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG); #endif SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH | ESP_INTR_FLAG_EDGE | ESP_INTR_FLAG_INTRDISABLED)) == 0, "intr flag not allowed", ESP_ERR_INVALID_ARG); #ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG); #endif #if CONFIG_IDF_TARGET_ESP32 SPI_CHECK((bus_config->data_io_default_level == 0), "no support changing io default level ", ESP_ERR_INVALID_ARG); #endif bool spi_chan_claimed = spicommon_periph_claim(host_id, "spi master"); SPI_CHECK(spi_chan_claimed, "host_id already in use", ESP_ERR_INVALID_STATE); //clean and initialize the context ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t)); if (!ctx) { err = ESP_ERR_NO_MEM; goto cleanup; }{...} bus_ctx[host_id] = ctx; ctx->host_id = host_id; bus_attr = &ctx->bus_attr; bus_attr->bus_cfg = *bus_config; if (dma_chan != SPI_DMA_DISABLED) { bus_attr->dma_enabled = 1; err = spicommon_dma_chan_alloc(host_id, dma_chan, &ctx->dma_ctx); if (err != ESP_OK) { goto cleanup; }{...} err = spicommon_dma_desc_alloc(ctx->dma_ctx, bus_config->max_transfer_sz, &bus_attr->max_transfer_sz); if (err != ESP_OK) { goto cleanup; }{...} #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE esp_cache_get_alignment(MALLOC_CAP_DMA, (size_t *)&bus_attr->internal_mem_align_size); #else bus_attr->internal_mem_align_size = 4; #endif }{...} else { bus_attr->dma_enabled = 0; bus_attr->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE; }{...} spi_bus_lock_config_t lock_config = { .host_id = host_id, .cs_num = SOC_SPI_PERIPH_CS_NUM(host_id), }{...}; err = spi_bus_init_lock(&bus_attr->lock, &lock_config); if (err != ESP_OK) { goto cleanup; }{...} #if SOC_SPI_SUPPORT_SLEEP_RETENTION && CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP sleep_retention_module_init_param_t init_param = { .cbs = { .create = { .handle = s_bus_create_sleep_retention_cb, .arg = ctx, }{...}, }{...}, .depends = RETENTION_MODULE_BITMAP_INIT(CLOCK_SYSTEM) }{...}; _lock_acquire(&ctx->mutex); if (sleep_retention_module_init(spi_reg_retention_info[host_id - 1].module_id, &init_param) == ESP_OK) { if ((bus_attr->bus_cfg.flags & SPICOMMON_BUSFLAG_SLP_ALLOW_PD) && (sleep_retention_module_allocate(spi_reg_retention_info[host_id - 1].module_id) != ESP_OK)) { // even though the sleep retention create failed, SPI driver should still work, so just warning here ESP_LOGW(SPI_TAG, "alloc sleep recover failed, peripherals may hold power on"); }{...} }{...} else { // even the sleep retention init failed, SPI driver should still work, so just warning here ESP_LOGW(SPI_TAG, "init sleep recover failed, spi may offline after sleep"); }{...} _lock_release(&ctx->mutex);/* ... */ #else if (bus_attr->bus_cfg.flags & SPICOMMON_BUSFLAG_SLP_ALLOW_PD) { ESP_LOGE(SPI_TAG, "power down peripheral in sleep is not enabled or not supported on your target"); }{...} #endif/* ... */ // SOC_SPI_SUPPORT_SLEEP_RETENTION #ifdef CONFIG_PM_ENABLE err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master", &bus_attr->pm_lock); if (err != ESP_OK) { goto cleanup; }{...} #endif/* ... */ //CONFIG_PM_ENABLE err = spicommon_bus_initialize_io(host_id, bus_config, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags); if (err != ESP_OK) { goto cleanup; }{...} return ESP_OK; cleanup: if (bus_attr) { #ifdef CONFIG_PM_ENABLE esp_pm_lock_delete(bus_attr->pm_lock); #endif if (bus_attr->lock) { spi_bus_deinit_lock(bus_attr->lock); }{...} if (ctx->dma_ctx) { free(ctx->dma_ctx->dmadesc_tx); free(ctx->dma_ctx->dmadesc_rx); spicommon_dma_chan_free(ctx->dma_ctx); ctx->dma_ctx = NULL; }{...} }{...} spicommon_periph_free(host_id); free(bus_ctx[host_id]); bus_ctx[host_id] = NULL; return err; }{ ... } void *spi_bus_dma_memory_alloc(spi_host_device_t host_id, size_t size, uint32_t extra_heap_caps) { (void) host_id; //remain for extendability ESP_RETURN_ON_FALSE((extra_heap_caps & MALLOC_CAP_SPIRAM) == 0, NULL, SPI_TAG, "external memory is not supported now"); size_t dma_requir = 16; //TODO: IDF-10111, using max alignment temp, refactor to "gdma_get_alignment_constraints" instead return heap_caps_aligned_calloc(dma_requir, 1, size, extra_heap_caps | MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL); }{ ... } const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id) { if (bus_ctx[host_id] == NULL) { return NULL; }{...} return &bus_ctx[host_id]->bus_attr; }{ ... } const spi_dma_ctx_t* spi_bus_get_dma_ctx(spi_host_device_t host_id) { if (bus_ctx[host_id] == NULL) { return NULL; }{...} return bus_ctx[host_id]->dma_ctx; }{ ... } esp_err_t spi_bus_free(spi_host_device_t host_id) { if (bus_ctx[host_id] == NULL) { return ESP_ERR_INVALID_STATE; }{...} esp_err_t err = ESP_OK; spicommon_bus_context_t* ctx = bus_ctx[host_id]; spi_bus_attr_t* bus_attr = &ctx->bus_attr; if (ctx->destroy_func) { err = ctx->destroy_func(ctx->destroy_arg); if (err != ESP_OK) { return err; }{...} }{...} spicommon_bus_free_io_cfg(&bus_attr->bus_cfg); #if SOC_SPI_SUPPORT_SLEEP_RETENTION && CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP const periph_retention_module_t retention_id = spi_reg_retention_info[host_id - 1].module_id; _lock_acquire(&ctx->mutex); if (sleep_retention_is_module_created(retention_id)) { assert(sleep_retention_is_module_inited(retention_id)); sleep_retention_module_free(retention_id); }{...} if (sleep_retention_is_module_inited(retention_id)) { sleep_retention_module_deinit(retention_id); }{...} _lock_release(&ctx->mutex); _lock_close(&ctx->mutex);/* ... */ #endif #ifdef CONFIG_PM_ENABLE esp_pm_lock_delete(bus_attr->pm_lock); #endif spi_bus_deinit_lock(bus_attr->lock); if (ctx->dma_ctx) { free(ctx->dma_ctx->dmadesc_tx); free(ctx->dma_ctx->dmadesc_rx); spicommon_dma_chan_free(ctx->dma_ctx); ctx->dma_ctx = NULL; }{...} spicommon_periph_free(host_id); free(ctx); bus_ctx[host_id] = NULL; return err; }{ ... } esp_err_t spi_bus_register_destroy_func(spi_host_device_t host_id, spi_destroy_func_t f, void *arg) { bus_ctx[host_id]->destroy_func = f; bus_ctx[host_id]->destroy_arg = arg; return ESP_OK; }{ ... } /* Code for workaround for DMA issue in ESP32 v0/v1 silicon *//* ... */ #if CONFIG_IDF_TARGET_ESP32 static volatile int dmaworkaround_channels_busy[2] = {0, 0}; static dmaworkaround_cb_t dmaworkaround_cb; static void *dmaworkaround_cb_arg; static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED; static int dmaworkaround_waiting_for_chan = 0; bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg) { int otherchan = (dmachan == 1) ? 2 : 1; bool ret; portENTER_CRITICAL_ISR(&dmaworkaround_mux); if (dmaworkaround_channels_busy[otherchan - 1]) { //Other channel is busy. Call back when it's done. dmaworkaround_cb = cb; dmaworkaround_cb_arg = arg; dmaworkaround_waiting_for_chan = otherchan; ret = false; }{...} else { //Reset DMA SPI_COMMON_RCC_CLOCK_ATOMIC() { spi_dma_ll_reset_register(dmachan); }{...} ret = true; }{...} portEXIT_CRITICAL_ISR(&dmaworkaround_mux); return ret; }{ ... } bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress(void) { return (dmaworkaround_waiting_for_chan != 0); }{ ... } void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan) { portENTER_CRITICAL_ISR(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan - 1] = 0; if (dmaworkaround_waiting_for_chan == dmachan) { //Reset DMA SPI_COMMON_RCC_CLOCK_ATOMIC() { spi_dma_ll_reset_register(dmachan); }{...} dmaworkaround_waiting_for_chan = 0; //Call callback dmaworkaround_cb(dmaworkaround_cb_arg); }{...} portEXIT_CRITICAL_ISR(&dmaworkaround_mux); }{ ... } void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan) { portENTER_CRITICAL_ISR(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan - 1] = 1; portEXIT_CRITICAL_ISR(&dmaworkaround_mux); }{ ... } #endif/* ... */ master bus init//#if CONFIG_IDF_TARGET_ESP32
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.