Select one of the symbols to view example projects that use it.
 
Outline
#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_pm.h"
#include "soc/rtc.h"
#include "soc/soc_caps.h"
#include "driver/rtc_io.h"
#include "sys/lock.h"
#include "driver/gpio.h"
#include "esp_private/adc_share_hw_ctrl.h"
#include "esp_private/sar_periph_ctrl.h"
#include "adc1_private.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/adc_ll.h"
#include "hal/adc_hal_common.h"
#include "esp_private/esp_clk_tree_common.h"
#include "esp_private/periph_ctrl.h"
#include "driver/adc_types_legacy.h"
#include "esp_clk_tree.h"
#include "hal/dac_types.h"
#include "hal/dac_ll.h"
#include "esp_efuse_rtc_calib.h"
ADC_TAG
#define ADC_GET_IO_NUM
#define RTC_ENTER_CRITICAL
#define RTC_EXIT_CRITICAL
#define DIGI_ENTER_CRITICAL
#define DIGI_EXIT_CRITICAL
#define ADC_POWER_ENTER
#define ADC_POWER_EXIT
#define DIGI_CONTROLLER_ENTER
#define DIGI_CONTROLLER_EXIT
#define SARADC1_ENTER
#define SARADC1_EXIT
#define SARADC2_ENTER
#define SARADC2_EXIT
#define VREF_ENTER
#define VREF_EXIT
#define FSM_ENTER
#define FSM_EXIT
adc1_dma_lock
#define SARADC1_ACQUIRE
#define SARADC1_RELEASE
clk_src_freq_hz
adc1_pad_get_io_num(adc1_channel_t, gpio_num_t *)
adc2_pad_get_io_num(adc2_channel_t, gpio_num_t *)
RTC Single Read
adc_set_clk_div(uint8_t)
adc_rtc_chan_init(adc_unit_t)
adc_common_gpio_init(adc_unit_t, adc_channel_t)
adc_set_data_inv(adc_unit_t, bool)
adc_set_data_width(adc_unit_t, adc_bits_width_t)
adc1_config_channel_atten(adc1_channel_t, adc_atten_t)
adc1_config_width(adc_bits_width_t)
adc1_dma_mode_acquire()
adc1_rtc_mode_acquire()
adc1_lock_release()
adc1_get_raw(adc1_channel_t)
adc1_get_voltage(adc1_channel_t)
adc1_ulp_enable()
adc2_config_channel_atten(adc2_channel_t, adc_atten_t)
adc2_init()
adc2_dac_disable(adc2_channel_t)
adc2_get_raw(adc2_channel_t, adc_bits_width_t, int *)
adc_vref_to_gpio(adc_unit_t, gpio_num_t)
#include "esp_check.h"
#define ADC_REG_LOCK_ENTER
#define ADC_REG_LOCK_EXIT
adc_hal_onetime_start(adc_unit_t, uint32_t)
adc_hal_convert(adc_unit_t, int, uint32_t, int *)
check_adc_oneshot_driver_conflict()
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/driver/deprecated/adc_legacy.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 *//* ... */ #include <esp_types.h> #include <stdlib.h> #include <ctype.h> #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "esp_log.h" #include "esp_check.h" #include "esp_pm.h" #include "soc/rtc.h" #include "soc/soc_caps.h" #include "driver/rtc_io.h" #include "sys/lock.h" #include "driver/gpio.h" #include "esp_private/adc_share_hw_ctrl.h" #include "esp_private/sar_periph_ctrl.h" #include "adc1_private.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #include "hal/adc_ll.h" #include "hal/adc_hal_common.h" #include "esp_private/esp_clk_tree_common.h" #include "esp_private/periph_ctrl.h" #include "driver/adc_types_legacy.h" #include "esp_clk_tree.h"26 includes #if SOC_DAC_SUPPORTED #include "hal/dac_types.h" #include "hal/dac_ll.h"/* ... */ #endif #if CONFIG_IDF_TARGET_ESP32S3 #include "esp_efuse_rtc_calib.h" #endif static const char *ADC_TAG = "ADC"; #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) //////////////////////// Locks /////////////////////////////////////////// extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define RTC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define RTC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) #define DIGI_ENTER_CRITICAL() #define DIGI_EXIT_CRITICAL() #define ADC_POWER_ENTER() RTC_ENTER_CRITICAL() #define ADC_POWER_EXIT() RTC_EXIT_CRITICAL() #define DIGI_CONTROLLER_ENTER() DIGI_ENTER_CRITICAL() #define DIGI_CONTROLLER_EXIT() DIGI_EXIT_CRITICAL() #define SARADC1_ENTER() RTC_ENTER_CRITICAL() #define SARADC1_EXIT() RTC_EXIT_CRITICAL() #define SARADC2_ENTER() RTC_ENTER_CRITICAL() #define SARADC2_EXIT() RTC_EXIT_CRITICAL() //n stands for ADC unit: 1 for ADC1 and 2 for ADC2. Currently both unit touches the same registers #define VREF_ENTER(n) RTC_ENTER_CRITICAL() #define VREF_EXIT(n) RTC_EXIT_CRITICAL() #define FSM_ENTER() RTC_ENTER_CRITICAL() #define FSM_EXIT() RTC_EXIT_CRITICAL()16 defines #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32P4 //prevent ADC1 being used by I2S dma and other tasks at the same time. static _lock_t adc1_dma_lock; #define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock ) #define SARADC1_RELEASE() _lock_release( &adc1_dma_lock )/* ... */ #endif /* In ADC2, there're two locks used for different cases: 1. lock shared with app and Wi-Fi: ESP32: When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed. ESP32S2: The controller's control over the ADC is determined by the arbiter. There is no need to control by lock. 2. lock shared between tasks: when several tasks sharing the ADC2, we want to guarantee all the requests will be handled. Since conversions are short (about 31us), app returns the lock very soon, we use a spinlock to stand there waiting to do conversions one by one. adc2_spinlock should be acquired first, then call `adc_lock_release(ADC_UNIT_2)` or rtc_spinlock. *//* ... */ #if CONFIG_IDF_TARGET_ESP32S2 #ifdef CONFIG_PM_ENABLE static esp_pm_lock_handle_t s_adc2_arbiter_lock; #endif //CONFIG_PM_ENABLE/* ... */ #endif // !CONFIG_IDF_TARGET_ESP32 static uint32_t clk_src_freq_hz; static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, uint32_t clk_src_freq_hz, int *out_raw); /*--------------------------------------------------------------- ADC Common ---------------------------------------------------------------*//* ... */ esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel"); int io = ADC_GET_IO_NUM(ADC_UNIT_1, channel); if (io < 0) { return ESP_ERR_INVALID_ARG; }{...} else { *gpio_num = (gpio_num_t)io; }{...} return ESP_OK; }{ ... } #if (SOC_ADC_PERIPH_NUM >= 2) esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel"); int io = ADC_GET_IO_NUM(ADC_UNIT_2, channel); if (io < 0) { return ESP_ERR_INVALID_ARG; }{...} else { *gpio_num = (gpio_num_t)io; }{...} return ESP_OK; }{ ... } /* ... */#endif //------------------------------------------------------------RTC Single Read----------------------------------------------// #if SOC_ADC_RTC_CTRL_SUPPORTED esp_err_t adc_set_clk_div(uint8_t clk_div) { DIGI_CONTROLLER_ENTER(); adc_ll_digi_set_clk_div(clk_div); DIGI_CONTROLLER_EXIT(); return ESP_OK; }{ ... } static void adc_rtc_chan_init(adc_unit_t adc_unit) { if (adc_unit == ADC_UNIT_1) { /* Workaround: Disable the synchronization operation function of ADC1 and DAC. If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. *//* ... */ #if SOC_DAC_SUPPORTED dac_ll_rtc_sync_by_adc(false); #endif adc_oneshot_ll_output_invert(ADC_UNIT_1, ADC_LL_DATA_INVERT_DEFAULT(ADC_UNIT_1)); adc_ll_set_sar_clk_div(ADC_UNIT_1, ADC_LL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_1)); #ifdef CONFIG_IDF_TARGET_ESP32 adc_ll_hall_disable(); //Disable other peripherals. adc_ll_amp_disable(); //Currently the LNA is not open, close it by default./* ... */ #endif }{...} if (adc_unit == ADC_UNIT_2) { adc_ll_pwdet_set_cct(ADC_LL_PWDET_CCT_DEFAULT); adc_oneshot_ll_output_invert(ADC_UNIT_2, ADC_LL_DATA_INVERT_DEFAULT(ADC_UNIT_2)); adc_ll_set_sar_clk_div(ADC_UNIT_2, ADC_LL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_2)); }{...} }{ ... } esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(adc_unit), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel"); #if ADC_LL_RTC_GPIO_SUPPORTED gpio_num_t gpio_num = 0; //If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run if (adc_unit == ADC_UNIT_1) { gpio_num = ADC_GET_IO_NUM(ADC_UNIT_1, channel); }{...} else if (adc_unit == ADC_UNIT_2) { gpio_num = ADC_GET_IO_NUM(ADC_UNIT_2, channel); }{...} else { return ESP_ERR_INVALID_ARG; }{...} ESP_RETURN_ON_ERROR(rtc_gpio_init(gpio_num), ADC_TAG, "rtc_gpio_init fail"); ESP_RETURN_ON_ERROR(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED), ADC_TAG, "rtc_gpio_set_direction fail"); ESP_RETURN_ON_ERROR(rtc_gpio_pulldown_dis(gpio_num), ADC_TAG, "rtc_gpio_pulldown_dis fail"); ESP_RETURN_ON_ERROR(rtc_gpio_pullup_dis(gpio_num), ADC_TAG, "rtc_gpio_pullup_dis fail");/* ... */ #endif return ESP_OK; }{ ... } esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en) { if (adc_unit == ADC_UNIT_1) { SARADC1_ENTER(); adc_oneshot_ll_output_invert(ADC_UNIT_1, inv_en); SARADC1_EXIT(); }{...} if (adc_unit == ADC_UNIT_2) { SARADC2_ENTER(); adc_oneshot_ll_output_invert(ADC_UNIT_2, inv_en); SARADC2_EXIT(); }{...} return ESP_OK; }{ ... } esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit) { ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width"); adc_bitwidth_t bitwidth = 0; #if CONFIG_IDF_TARGET_ESP32 if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) { bitwidth = SOC_ADC_RTC_MAX_BITWIDTH; }{...} else { switch (width_bit) { case ADC_WIDTH_BIT_9: bitwidth = ADC_BITWIDTH_9; break;... case ADC_WIDTH_BIT_10: bitwidth = ADC_BITWIDTH_10; break;... case ADC_WIDTH_BIT_11: bitwidth = ADC_BITWIDTH_11; break;... case ADC_WIDTH_BIT_12: bitwidth = ADC_BITWIDTH_12; break;... default: return ESP_ERR_INVALID_ARG;... }{...} }{...} #elif/* ... */ CONFIG_IDF_TARGET_ESP32S2 bitwidth = ADC_BITWIDTH_13; #else //esp32s3 bitwidth = ADC_BITWIDTH_12; #endif if (adc_unit == ADC_UNIT_1) { SARADC1_ENTER(); adc_oneshot_ll_set_output_bits(ADC_UNIT_1, bitwidth); SARADC1_EXIT(); }{...} if (adc_unit == ADC_UNIT_2) { SARADC2_ENTER(); adc_oneshot_ll_set_output_bits(ADC_UNIT_2, bitwidth); SARADC2_EXIT(); }{...} return ESP_OK; }{ ... } /** * @brief Reset RTC controller FSM. * * @return * - ESP_OK Success *//* ... */ #if !CONFIG_IDF_TARGET_ESP32 esp_err_t adc_rtc_reset(void) { FSM_ENTER(); adc_ll_rtc_reset(); FSM_EXIT(); return ESP_OK; }{...} /* ... */#endif /*------------------------------------------------------------------------------------- * ADC1 *------------------------------------------------------------------------------------*//* ... */ esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel"); ESP_RETURN_ON_FALSE(atten < SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err"); #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED if (!clk_src_freq_hz) { //should never fail esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz); }{...} #endif/* ... */ //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED adc_common_gpio_init(ADC_UNIT_1, channel); SARADC1_ENTER(); adc_rtc_chan_init(ADC_UNIT_1); adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten); SARADC1_EXIT(); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_1); #endif return ESP_OK; }{ ... } esp_err_t adc1_config_width(adc_bits_width_t width_bit) { ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width"); adc_bitwidth_t bitwidth = 0; #if CONFIG_IDF_TARGET_ESP32 if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) { bitwidth = SOC_ADC_RTC_MAX_BITWIDTH; }{...} else { switch (width_bit) { case ADC_WIDTH_BIT_9: bitwidth = ADC_BITWIDTH_9; break;... case ADC_WIDTH_BIT_10: bitwidth = ADC_BITWIDTH_10; break;... case ADC_WIDTH_BIT_11: bitwidth = ADC_BITWIDTH_11; break;... case ADC_WIDTH_BIT_12: bitwidth = ADC_BITWIDTH_12; break;... default: return ESP_ERR_INVALID_ARG;... }{...} }{...} #elif/* ... */ CONFIG_IDF_TARGET_ESP32S2 bitwidth = ADC_BITWIDTH_13; #else //esp32s3 bitwidth = ADC_BITWIDTH_12; #endif SARADC1_ENTER(); adc_oneshot_ll_set_output_bits(ADC_UNIT_1, bitwidth); SARADC1_EXIT(); return ESP_OK; }{ ... } esp_err_t adc1_dma_mode_acquire(void) { /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. *//* ... */ SARADC1_ACQUIRE(); ESP_LOGD(ADC_TAG, "dma mode takes adc1 lock."); sar_periph_ctrl_adc_continuous_power_acquire(); SARADC1_ENTER(); /* switch SARADC into DIG channel */ adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_DIG); SARADC1_EXIT(); return ESP_OK; }{ ... } esp_err_t adc1_rtc_mode_acquire(void) { /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. *//* ... */ SARADC1_ACQUIRE(); sar_periph_ctrl_adc_oneshot_power_acquire(); SARADC1_ENTER(); /* switch SARADC into RTC channel. */ adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC); SARADC1_EXIT(); return ESP_OK; }{ ... } esp_err_t adc1_lock_release(void) { ESP_RETURN_ON_FALSE((uint32_t *)adc1_dma_lock != NULL, ESP_ERR_INVALID_STATE, ADC_TAG, "adc1 lock release called before acquire"); /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */ sar_periph_ctrl_adc_oneshot_power_release(); SARADC1_RELEASE(); return ESP_OK; }{ ... } int adc1_get_raw(adc1_channel_t channel) { int adc_value; ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel"); adc1_rtc_mode_acquire(); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_atten_t atten = adc_ll_get_atten(ADC_UNIT_1, channel); adc_set_hw_calibration_code(ADC_UNIT_1, atten);/* ... */ #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED SARADC1_ENTER(); #ifdef CONFIG_IDF_TARGET_ESP32 adc_ll_hall_disable(); //Disable other peripherals. adc_ll_amp_disable(); //Currently the LNA is not open, close it by default./* ... */ #endif adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC); //Set controller adc_oneshot_ll_set_channel(ADC_UNIT_1, channel); adc_hal_convert(ADC_UNIT_1, channel, clk_src_freq_hz, &adc_value); //Start conversion, For ADC1, the data always valid. #if !CONFIG_IDF_TARGET_ESP32 adc_ll_rtc_reset(); //Reset FSM of rtc controller #endif SARADC1_EXIT(); adc1_lock_release(); return adc_value; }{ ... } int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw() instead { return adc1_get_raw(channel); }{...} #if SOC_ULP_SUPPORTED void adc1_ulp_enable(void) { sar_periph_ctrl_adc_oneshot_power_acquire(); SARADC1_ENTER(); adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_ULP); /* since most users do not need LNA and HALL with uLP, we disable them here open them in the uLP if needed. *//* ... */ #ifdef CONFIG_IDF_TARGET_ESP32 /* disable other peripherals. */ adc_ll_hall_disable(); adc_ll_amp_disable();/* ... */ #endif SARADC1_EXIT(); }{ ... } /* ... */#endif #if (SOC_ADC_PERIPH_NUM >= 2) /*--------------------------------------------------------------- ADC2 ---------------------------------------------------------------*//* ... */ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel"); ESP_RETURN_ON_FALSE(atten <= SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err"); #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED if (!clk_src_freq_hz) { //should never fail esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz); }{...} #endif/* ... */ //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED adc_common_gpio_init(ADC_UNIT_2, channel); #if CONFIG_IDF_TARGET_ESP32 /** For ESP32S2 and S3, the right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/ if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) { //try the lock, return if failed (wifi using). return ESP_ERR_TIMEOUT; }{...} #endif/* ... */ //avoid collision with other tasks SARADC2_ENTER(); adc_rtc_chan_init(ADC_UNIT_2); adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten); SARADC2_EXIT(); #if CONFIG_IDF_TARGET_ESP32 adc_lock_release(ADC_UNIT_2); #endif #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_2); #endif return ESP_OK; }{ ... } static inline void adc2_init(void) { #if CONFIG_IDF_TARGET_ESP32S2 #ifdef CONFIG_PM_ENABLE /* Lock APB clock. */ if (s_adc2_arbiter_lock == NULL) { esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc2", &s_adc2_arbiter_lock); }{...} #endif/* ... */ //CONFIG_PM_ENABLE/* ... */ #endif //CONFIG_IDF_TARGET_ESP32S2 }{ ... } static inline void adc2_dac_disable(adc2_channel_t channel) { #if SOC_DAC_SUPPORTED #ifdef CONFIG_IDF_TARGET_ESP32 if (channel == ADC2_CHANNEL_8) { // the same as DAC channel 0 dac_ll_power_down(DAC_CHAN_0); }{...} else if (channel == ADC2_CHANNEL_9) { dac_ll_power_down(DAC_CHAN_1); }{...} #else/* ... */ if (channel == ADC2_CHANNEL_6) { // the same as DAC channel 0 dac_ll_power_down(DAC_CHAN_0); }{...} else if (channel == ADC2_CHANNEL_7) { dac_ll_power_down(DAC_CHAN_1); }{...} #endif/* ... */ /* ... */#endif // SOC_DAC_SUPPORTED }{ ... } /** * @note For ESP32S2: * The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * Or, the RTC controller will fail when get raw data. * This issue does not occur on digital controllers (DMA mode), and the hardware guarantees that there will be no errors. *//* ... */ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out) { esp_err_t ret = ESP_OK; int adc_value = 0; adc_bitwidth_t bitwidth = 0; ESP_RETURN_ON_FALSE(raw_out != NULL, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC out value err"); ESP_RETURN_ON_FALSE(channel < ADC2_CHANNEL_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Channel Err"); ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width"); #if CONFIG_IDF_TARGET_ESP32 if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) { bitwidth = SOC_ADC_RTC_MAX_BITWIDTH; }{...} else { switch (width_bit) { case ADC_WIDTH_BIT_9: bitwidth = ADC_BITWIDTH_9; break;... case ADC_WIDTH_BIT_10: bitwidth = ADC_BITWIDTH_10; break;... case ADC_WIDTH_BIT_11: bitwidth = ADC_BITWIDTH_11; break;... case ADC_WIDTH_BIT_12: bitwidth = ADC_BITWIDTH_12; break;... default: return ESP_ERR_INVALID_ARG;... }{...} }{...} #elif/* ... */ CONFIG_IDF_TARGET_ESP32S2 bitwidth = ADC_BITWIDTH_13; #else //esp32s3 bitwidth = ADC_BITWIDTH_12; #endif #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_atten_t atten = adc_ll_get_atten(ADC_UNIT_2, channel); adc_set_hw_calibration_code(ADC_UNIT_2, atten);/* ... */ #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED #if CONFIG_IDF_TARGET_ESP32 /** For ESP32S2 and S3, the right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/ if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) { //try the lock, return if failed (wifi using). return ESP_ERR_TIMEOUT; }{...} #endif/* ... */ sar_periph_ctrl_adc_oneshot_power_acquire(); //in critical section with whole rtc module //avoid collision with other tasks adc2_init(); // in critical section with whole rtc module. because the PWDET use the same registers, place it here. SARADC2_ENTER(); #if SOC_ADC_ARBITER_SUPPORTED adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); adc_hal_arbiter_config(&config);/* ... */ #endif #ifdef CONFIG_ADC_DISABLE_DAC adc2_dac_disable(channel); //disable other peripherals #endif adc_oneshot_ll_set_output_bits(ADC_UNIT_2, bitwidth); #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32P4 adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_RTC);// set controller #else adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_ARB);// set controller #endif #if CONFIG_IDF_TARGET_ESP32S2 #ifdef CONFIG_PM_ENABLE if (s_adc2_arbiter_lock) { esp_pm_lock_acquire(s_adc2_arbiter_lock); }{...} #endif/* ... */ //CONFIG_PM_ENABLE/* ... */ #endif //CONFIG_IDF_TARGET_ESP32 adc_oneshot_ll_set_channel(ADC_UNIT_2, channel); ret = adc_hal_convert(ADC_UNIT_2, channel, clk_src_freq_hz, &adc_value); if (ret != ESP_OK) { adc_value = -1; }{...} #if CONFIG_IDF_TARGET_ESP32S2 #ifdef CONFIG_PM_ENABLE /* Release APB clock. */ if (s_adc2_arbiter_lock) { esp_pm_lock_release(s_adc2_arbiter_lock); }{...} #endif/* ... */ //CONFIG_PM_ENABLE/* ... */ #endif //CONFIG_IDF_TARGET_ESP32 SARADC2_EXIT(); sar_periph_ctrl_adc_oneshot_power_release(); #if CONFIG_IDF_TARGET_ESP32 adc_lock_release(ADC_UNIT_2); #endif *raw_out = adc_value; return ret; }{ ... } esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio) { #ifdef CONFIG_IDF_TARGET_ESP32 if (adc_unit == ADC_UNIT_1) { return ESP_ERR_INVALID_ARG; }{...} #endif/* ... */ adc2_channel_t ch = ADC2_CHANNEL_MAX; /* Check if the GPIO supported. */ for (int i = 0; i < ADC2_CHANNEL_MAX; i++) { if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) { ch = i; break; }{...} }{...} if (ch == ADC2_CHANNEL_MAX) { return ESP_ERR_INVALID_ARG; }{...} sar_periph_ctrl_adc_oneshot_power_acquire(); if (adc_unit == ADC_UNIT_1) { VREF_ENTER(1); adc_ll_vref_output(ADC_UNIT_1, ch, true); VREF_EXIT(1); }{...} else if (adc_unit == ADC_UNIT_2) { VREF_ENTER(2); adc_ll_vref_output(ADC_UNIT_2, ch, true); VREF_EXIT(2); }{...} //Configure RTC gpio, Only ADC2's channels IO are supported to output reference voltage. adc_common_gpio_init(ADC_UNIT_2, ch); return ESP_OK; }{ ... } /* ... */#endif //SOC_ADC_RTC_CTRL_SUPPORTED/* ... */ #endif //#if (SOC_ADC_PERIPH_NUM >= 2) #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED /*--------------------------------------------------------------- Legacy ADC Single Read Mode when RTC controller isn't supported ---------------------------------------------------------------*//* ... */ #include "esp_check.h" portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED; #define ADC_REG_LOCK_ENTER() portENTER_CRITICAL(&adc_reg_lock) #define ADC_REG_LOCK_EXIT() portEXIT_CRITICAL(&adc_reg_lock) static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API #if (SOC_ADC_PERIPH_NUM >= 2) static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API #endif static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel) { assert(adc_unit < SOC_ADC_PERIPH_NUM); uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1; return adc_channel_io_map[adc_n][adc_channel]; }{...} static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask) { esp_err_t ret = ESP_OK; uint64_t gpio_mask = 0; uint32_t n = 0; int8_t io = 0; while (channel_mask) { if (channel_mask & 0x1) { io = adc_digi_get_io_num(adc_unit, n); if (io < 0) { return ESP_ERR_INVALID_ARG; }{...} gpio_mask |= BIT64(io); }{...} channel_mask = channel_mask >> 1; n++; }{...} gpio_config_t cfg = { .pin_bit_mask = gpio_mask, .mode = GPIO_MODE_DISABLE, }{...}; ret = gpio_config(&cfg); return ret; }{...} #if CONFIG_IDF_TARGET_ESP32C3 esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio) { esp_err_t ret; uint32_t channel = ADC2_CHANNEL_MAX; if (adc_unit == ADC_UNIT_2) { for (int i = 0; i < ADC2_CHANNEL_MAX; i++) { if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) { channel = i; break; }{...} }{...} if (channel == ADC2_CHANNEL_MAX) { return ESP_ERR_INVALID_ARG; }{...} }{...} sar_periph_ctrl_adc_oneshot_power_acquire(); if (adc_unit == ADC_UNIT_1) { RTC_ENTER_CRITICAL(); adc_ll_vref_output(ADC_UNIT_1, channel, true); RTC_EXIT_CRITICAL(); }{...} else { //ADC_UNIT_2 RTC_ENTER_CRITICAL(); adc_ll_vref_output(ADC_UNIT_2, channel, true); RTC_EXIT_CRITICAL(); }{...} ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel)); return ret; }{...} /* ... */#endif esp_err_t adc1_config_width(adc_bits_width_t width_bit) { //On ESP32C3, the data width is always 12-bits. if (width_bit != ADC_WIDTH_BIT_12) { return ESP_ERR_INVALID_ARG; }{...} return ESP_OK; }{...} esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC1 channel error"); ESP_RETURN_ON_FALSE((atten < SOC_ADC_ATTEN_NUM), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err"); #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED if (!clk_src_freq_hz) { //should never fail esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz); }{...} /* ... */#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED esp_err_t ret = ESP_OK; s_atten1_single[channel] = atten; ret = adc_digi_gpio_init(ADC_UNIT_1, BIT(channel)); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_1); #endif return ret; }{...} int adc1_get_raw(adc1_channel_t channel) { int raw_out = 0; if (adc_lock_try_acquire(ADC_UNIT_1) != ESP_OK) { return ESP_ERR_TIMEOUT; }{...} adc_apb_periph_claim(); sar_periph_ctrl_adc_oneshot_power_acquire(); esp_clk_tree_enable_src((soc_module_clk_t)ADC_DIGI_CLK_SRC_DEFAULT, true); adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT); adc_atten_t atten = s_atten1_single[channel]; #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_set_hw_calibration_code(ADC_UNIT_1, atten); #endif ADC_REG_LOCK_ENTER(); adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten); adc_hal_convert(ADC_UNIT_1, channel, clk_src_freq_hz, &raw_out); ADC_REG_LOCK_EXIT(); sar_periph_ctrl_adc_oneshot_power_release(); adc_apb_periph_free(); adc_lock_release(ADC_UNIT_1); return raw_out; }{...} #if (SOC_ADC_PERIPH_NUM >= 2) esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 channel error"); ESP_RETURN_ON_FALSE((atten <= ADC_ATTEN_DB_12), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err"); esp_err_t ret = ESP_OK; s_atten2_single[channel] = atten; ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel)); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_2); #endif return ret; }{...} esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out) { //On ESP32C3, the data width is always 12-bits. if (width_bit != ADC_WIDTH_BIT_12) { return ESP_ERR_INVALID_ARG; }{...} #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED if (!clk_src_freq_hz) { //should never fail esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz); }{...} /* ... */#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED esp_err_t ret = ESP_OK; if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) { return ESP_ERR_TIMEOUT; }{...} adc_apb_periph_claim(); sar_periph_ctrl_adc_oneshot_power_acquire(); esp_clk_tree_enable_src((soc_module_clk_t)ADC_DIGI_CLK_SRC_DEFAULT, true); adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT); adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); adc_hal_arbiter_config(&config); adc_atten_t atten = s_atten2_single[channel]; #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_set_hw_calibration_code(ADC_UNIT_2, atten); #endif ADC_REG_LOCK_ENTER(); adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten); ret = adc_hal_convert(ADC_UNIT_2, channel, clk_src_freq_hz, raw_out); ADC_REG_LOCK_EXIT(); sar_periph_ctrl_adc_oneshot_power_release(); adc_apb_periph_free(); adc_lock_release(ADC_UNIT_2); return ret; }{...} /* ... */#endif //#if (SOC_ADC_PERIPH_NUM >= 2)/* ... */ #endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED static void adc_hal_onetime_start(adc_unit_t adc_n, uint32_t clk_src_freq_hz) { #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED (void)adc_n; /** * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller * clock cycle. *//* ... */ uint32_t digi_clk = clk_src_freq_hz / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1); //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough. uint32_t delay = (1000 * 1000) / digi_clk + 1; //3 ADC digital controller clock cycle delay = delay * 3; //This coefficient (8) is got from test, and verified from DT. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed. if (digi_clk >= APB_CLK_FREQ / 8) { delay = 0; }{...} adc_oneshot_ll_start(false); esp_rom_delay_us(delay); adc_oneshot_ll_start(true); //No need to delay here. Because if the start signal is not seen, there won't be a done intr./* ... */ #else (void)clk_src_freq_hz; adc_oneshot_ll_start(adc_n);/* ... */ #endif }{ ... } static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, uint32_t clk_src_freq_hz, int *out_raw) { uint32_t event = (adc_n == ADC_UNIT_1) ? ADC_LL_EVENT_ADC1_ONESHOT_DONE : ADC_LL_EVENT_ADC2_ONESHOT_DONE; adc_oneshot_ll_clear_event(event); adc_oneshot_ll_disable_all_unit(); adc_oneshot_ll_enable(adc_n); adc_oneshot_ll_set_channel(adc_n, channel); adc_hal_onetime_start(adc_n, clk_src_freq_hz); while (adc_oneshot_ll_get_event(event) != true) { ; }{...} *out_raw = adc_oneshot_ll_get_raw_result(adc_n); if (adc_oneshot_ll_raw_check_valid(adc_n, *out_raw) == false) { return ESP_ERR_INVALID_STATE; }{...} //HW workaround: when enabling periph clock, this should be false adc_oneshot_ll_disable_all_unit(); return ESP_OK; }{ ... } #if !CONFIG_ADC_SKIP_LEGACY_CONFLICT_CHECK /** * @brief This function will be called during start up, to check that adc_oneshot driver is not running along with the legacy adc oneshot driver *//* ... */ __attribute__((constructor)) static void check_adc_oneshot_driver_conflict(void) { // This function was declared as weak here. adc_oneshot driver has one implementation. // So if adc_oneshot driver is not linked in, then `adc_oneshot_new_unit` should be NULL at runtime. extern __attribute__((weak)) esp_err_t adc_oneshot_new_unit(const void *init_config, void **ret_unit); if ((void *)adc_oneshot_new_unit != NULL) { ESP_EARLY_LOGE(ADC_TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver"); abort(); }{...} ESP_EARLY_LOGW(ADC_TAG, "legacy driver is deprecated, please migrate to `esp_adc/adc_oneshot.h`"); }{ ... } #endif/* ... */ //CONFIG_ADC_SKIP_LEGACY_CONFLICT_CHECK #if SOC_ADC_CALIBRATION_V1_SUPPORTED /*--------------------------------------------------------------- ADC Hardware Calibration ---------------------------------------------------------------*//* ... */ static __attribute__((constructor)) void adc_hw_calibration(void) { //Calculate all ICode for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) { adc_hal_calibration_init(i); for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) { /** * This may get wrong when attenuations are NOT consecutive on some chips, * update this when bringing up the calibration on that chip *//* ... */ adc_calc_hw_calibration_code(i, j); #if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED /* Load the channel compensation from efuse */ for (int k = 0; k < SOC_ADC_CHANNEL_NUM(i); k++) { adc_load_hw_calibration_chan_compens(i, k, j); }{...} /* ... */#endif }{...} }{...} }{...} /* ... */#endifRTC Single Read //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.