Select one of the symbols to view example projects that use it.
 
Outline
Includes
#include "main.h"
Private define
#define TIM_FREQUENCIES_NB
Private variables
aFrequency
iFrequency
uwMeasuredFrequency
TimOutClock
Private function prototypes
main()
Configure_TIMInputCapture()
Configure_TIMPWMOutput()
Configure_Frequency(uint32_t)
LED_Init()
LED_Blinking(uint32_t)
UserButton_Init()
SystemClock_Config()
UserButton_Callback()
TimerCaptureCompare_Callback()
Files
loading (2/3)...
SourceVuSTM32 Libraries and SamplesTIM_InputCaptureSrc/main.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/** ****************************************************************************** * @file Examples_LL/TIM/TIM_InputCapture/Src/main.c * @author MCD Application Team * @brief This example describes how to use a timer instance in input * capture mode using the STM32F4xx TIM LL API. * Peripheral initialization done using LL unitary services functions. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** *//* ... */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_LL_Examples * @{ *//* ... */ /** @addtogroup TIM_InputCapture * @{ *//* ... */ Includes /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Number of frequencies */ #define TIM_FREQUENCIES_NB 10 Private define /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Frequency table */ static uint32_t aFrequency[TIM_FREQUENCIES_NB] = { 2000, /* 2 kHz */ 4000, /* 4 kHz */ 6000, /* 6 kHz */ 8000, /* 8 kHz */ 10000, /* 10 kHz */ 12000, /* 12 kHz */ 14000, /* 14 kHz */ 16000, /* 16 kHz */ 18000, /* 18 kHz */ 20000, /* 20 kHz */ ...}; /* Frequency index */ static uint8_t iFrequency = 0; /* Measured frequency */ __IO uint32_t uwMeasuredFrequency = 0; /* TIM2 Clock */ static uint32_t TimOutClock = 1; Private variables /* Private function prototypes -----------------------------------------------*/ __STATIC_INLINE void SystemClock_Config(void); __STATIC_INLINE void Configure_TIMPWMOutput(void); __STATIC_INLINE void Configure_TIMInputCapture(void); __STATIC_INLINE void Configure_Frequency(uint32_t Frequency); __STATIC_INLINE void LED_Init(void); __STATIC_INLINE void LED_Blinking(uint32_t Period); __STATIC_INLINE void UserButton_Init(void); Private function prototypes /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None *//* ... */ int main(void) { /* Configure the system clock to 100 MHz */ SystemClock_Config(); /* Initialize LED2 */ LED_Init(); /* Initialize button in EXTI mode */ UserButton_Init(); /* Configure TIM3 in input capture mode */ Configure_TIMInputCapture(); /* Configure TIM2 in PWM output mode */ Configure_TIMPWMOutput(); /* Infinite loop */ while (1) { }while (1) { ... } }{ ... } /** * @brief This function enables the peripheral clock on TIM3, configures * TIM3_CH1 as input and enables the capture/compare 1 interrupt * It enables also the peripheral clock for GPIOA and configures * PA.06 as alternate function for TIM3_CH1. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None *//* ... */ __STATIC_INLINE void Configure_TIMInputCapture(void) { /*************************/ /* GPIO AF configuration */ /*************************/ /* Enable the peripheral clock of GPIOs */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA); /* GPIO TIM3_CH1 configuration */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_6, LL_GPIO_MODE_ALTERNATE); LL_GPIO_SetPinPull(GPIOA, LL_GPIO_PIN_6, LL_GPIO_PULL_DOWN); LL_GPIO_SetPinSpeed(GPIOA, LL_GPIO_PIN_6, LL_GPIO_SPEED_FREQ_HIGH); LL_GPIO_SetAFPin_0_7(GPIOA, LL_GPIO_PIN_6, LL_GPIO_AF_2); ... /***************************************************************/ /* Configure the NVIC to handle TIM3 capture/compare interrupt */ /***************************************************************/ NVIC_SetPriority(TIM3_IRQn, 0); NVIC_EnableIRQ(TIM3_IRQn); ... /******************************/ /* Peripheral clocks enabling */ /******************************/ /* Enable the timer peripheral clock */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3); ... /************************************/ /* Input capture mode configuration */ /************************************/ /* Select the active input: IC1 = TI1FP1 */ LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI); /* Configure the input filter duration: no filter needed */ LL_TIM_IC_SetFilter(TIM3, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1); /* Set input prescaler: prescaler is disabled */ LL_TIM_IC_SetPrescaler(TIM3, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1); /* Select the edge of the active transition on the TI1 channel: rising edge */ LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING); ... /**************************/ /* TIM3 interrupts set-up */ /**************************/ /* Enable the capture/compare interrupt for channel 1 */ LL_TIM_EnableIT_CC1(TIM3); ... /***********************/ /* Start input capture */ /***********************/ /* Enable output channel 1 */ LL_TIM_CC_EnableChannel(TIM3, LL_TIM_CHANNEL_CH1); /* Enable counter */ LL_TIM_EnableCounter(TIM3); }{ ... } /** * @brief This function enables the peripheral clock on TIM2 and configures * TIM2_CHTIMB_CHX as PWM output. * It enables also the peripheral clock for GPIOA and configures * PA.06 as alternate function for TIM2_CHTIMB_CHX. * @note Peripheral configuration is minimal configuration from reset values. * Thus, some useless LL unitary functions calls below are provided as * commented examples - setting is default configuration from reset. * @param None * @retval None *//* ... */ __STATIC_INLINE void Configure_TIMPWMOutput(void) { /*************************/ /* GPIO AF configuration */ /*************************/ /* Enable the peripheral clock of GPIOs */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA); /* GPIO TIM2_CH1 configuration */ LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_5, LL_GPIO_MODE_ALTERNATE); LL_GPIO_SetPinPull(GPIOA, LL_GPIO_PIN_5, LL_GPIO_PULL_DOWN); LL_GPIO_SetPinSpeed(GPIOA, LL_GPIO_PIN_5, LL_GPIO_SPEED_FREQ_HIGH); LL_GPIO_SetAFPin_0_7(GPIOA, LL_GPIO_PIN_5, LL_GPIO_AF_1); ... /******************************/ /* Peripheral clocks enabling */ /******************************/ /* Enable the timer peripheral clock */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2); ... /***************************/ /* Time base configuration */ /***************************/ /* Set counter mode */ /* Reset value is LL_TIM_COUNTERMODE_UP */ //LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP); /* Enable TIM2_ARR register preload. Writing to or reading from the */ /* auto-reload register accesses the preload register. The content of the */ /* preload register are transferred into the shadow register at each update */ /* event (UEV). */ LL_TIM_EnableARRPreload(TIM2); /* Set the auto-reload value to have a counter frequency of 2 kHz */ /* TIM2CLK = SystemCoreClock / (APB prescaler & multiplier) */ TimOutClock = SystemCoreClock/1; /* TIM2 counter frequency = TimOutClock / (ARR + 1) */ LL_TIM_SetAutoReload(TIM2, __LL_TIM_CALC_ARR(TimOutClock, LL_TIM_GetPrescaler(TIM2), aFrequency[0])); ... /*********************************/ /* Output waveform configuration */ /*********************************/ /* Set output mode: PWM mode 1 */ LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_PWM1); /* Set compare value to half of the counter period (50% duty cycle )*/ LL_TIM_OC_SetCompareCH1(TIM2, (LL_TIM_GetAutoReload(TIM2) / 2)); /* Enable TIM2_CCR1 register preload. Read/Write operations access the */ /* preload register. TIM2_CCR1 preload value is loaded in the active */ /* at each update event. */ LL_TIM_OC_EnablePreload(TIM2, LL_TIM_CHANNEL_CH1); ... /**********************************/ /* Start output signal generation */ /**********************************/ /* Enable output channel 1 */ LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1); /* Enable counter */ LL_TIM_EnableCounter(TIM2); /* Force update generation */ LL_TIM_GenerateEvent_UPDATE(TIM2); }{ ... } /** * @brief Changes the frequency of the PWM signal. * @note this function is executed within the CC1 interrupt service * routine context. * @param Requested frequency * @retval None *//* ... */ __STATIC_INLINE void Configure_Frequency(uint32_t Frequency) { /* Set the auto-reload value to have the requested frequency */ /* Frequency = TIM2CLK / (ARR + 1) */ LL_TIM_SetAutoReload(TIM2, __LL_TIM_CALC_ARR(TimOutClock, LL_TIM_GetPrescaler(TIM2), Frequency)); /* Set compare value to half of the counter period (50% duty cycle )*/ LL_TIM_OC_SetCompareCH1(TIM2, (LL_TIM_GetAutoReload(TIM2) / 2)); }{ ... } /** * @brief Initialize LED2. * @param None * @retval None *//* ... */ __STATIC_INLINE void LED_Init(void) { /* Enable the LED2 Clock */ LED2_GPIO_CLK_ENABLE(); /* Configure IO in output push-pull mode to drive external LED2 */ LL_GPIO_SetPinMode(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_MODE_OUTPUT); /* Reset value is LL_GPIO_OUTPUT_PUSHPULL */ //LL_GPIO_SetPinOutputType(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_OUTPUT_PUSHPULL); /* Reset value is LL_GPIO_SPEED_FREQ_LOW */ //LL_GPIO_SetPinSpeed(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_SPEED_FREQ_LOW); /* Reset value is LL_GPIO_PULL_NO */ //LL_GPIO_SetPinPull(LED2_GPIO_PORT, LED2_PIN, LL_GPIO_PULL_NO); }{ ... } /** * @brief Set LED2 to Blinking mode for an infinite loop (toggle period based on value provided as input parameter). * @param Period : Period of time (in ms) between each toggling of LED * This parameter can be user defined values. Pre-defined values used in that example are : * @arg LED_BLINK_FAST : Fast Blinking * @arg LED_BLINK_SLOW : Slow Blinking * @arg LED_BLINK_ERROR : Error specific Blinking * @retval None *//* ... */ __STATIC_INLINE void LED_Blinking(uint32_t Period) { /* Toggle IO in an infinite loop */ while (1) { LL_GPIO_TogglePin(LED2_GPIO_PORT, LED2_PIN); LL_mDelay(Period); }while (1) { ... } }{ ... } /** * @brief Configures User push-button in GPIO or EXTI Line Mode. * @param None * @retval None *//* ... */ __STATIC_INLINE void UserButton_Init(void) { /* Enable the BUTTON Clock */ USER_BUTTON_GPIO_CLK_ENABLE(); /* Configure GPIO for BUTTON */ LL_GPIO_SetPinMode(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(USER_BUTTON_GPIO_PORT, USER_BUTTON_PIN, LL_GPIO_PULL_NO); /* Connect External Line to the GPIO*/ USER_BUTTON_SYSCFG_SET_EXTI(); /* Enable a rising trigger EXTI line 13 Interrupt */ USER_BUTTON_EXTI_LINE_ENABLE(); USER_BUTTON_EXTI_FALLING_TRIG_ENABLE(); /* Configure NVIC for USER_BUTTON_EXTI_IRQn */ NVIC_EnableIRQ(USER_BUTTON_EXTI_IRQn); NVIC_SetPriority(USER_BUTTON_EXTI_IRQn,0x03); }{ ... } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 100000000 * HCLK(Hz) = 100000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSE Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 400 * PLL_P = 4 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None *//* ... */ void SystemClock_Config(void) { /* Enable HSE oscillator */ LL_RCC_HSE_EnableBypass(); LL_RCC_HSE_Enable(); while(LL_RCC_HSE_IsReady() != 1) { }while (LL_RCC_HSE_IsReady() != 1) { ... }; /* Set FLASH latency */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_3); /* Main PLL configuration and activation */ LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_8, 400, LL_RCC_PLLP_DIV_4); LL_RCC_PLL_Enable(); while(LL_RCC_PLL_IsReady() != 1) { }while (LL_RCC_PLL_IsReady() != 1) { ... }; /* Sysclk activation on the main PLL */ LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { }while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { ... }; /* Set APB1 & APB2 prescaler */ LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); /* Set systick to 1ms */ SysTick_Config(100000000 / 1000); /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */ SystemCoreClock = 100000000; }{ ... } /******************************************************************************/ /* USER IRQ HANDLER TREATMENT */ /******************************************************************************/ /** * @brief User button interrupt processing * @note When the user key button is pressed the frequency of the * PWM signal generated by TIM2 is updated. * @param None * @retval None *//* ... */ void UserButton_Callback(void) { /* Set new PWM signal frequency */ iFrequency = (iFrequency + 1) % TIM_FREQUENCIES_NB; /* Change PWM signal frequency */ Configure_Frequency(aFrequency[iFrequency]); }{ ... } /** * @brief Timer capture/compare interrupt processing * @note TIM3 input capture module is used to capture the value of the counter * after a transition is detected by the corresponding input channel. * @param None * @retval None *//* ... */ void TimerCaptureCompare_Callback(void) { /* Capture index */ static uint16_t uhCaptureIndex = 0; /* Captured Values */ static uint32_t uwICValue1 = 0; static uint32_t uwICValue2 = 0; static uint32_t uwDiffCapture = 0; uint32_t TIM3CLK; uint32_t PSC; uint32_t IC1PSC; uint32_t IC1Polarity; if(uhCaptureIndex == 0) { /* Get the 1st Input Capture value */ uwICValue1 = LL_TIM_IC_GetCaptureCH1(TIM3); uhCaptureIndex = 1; }if (uhCaptureIndex == 0) { ... } else if(uhCaptureIndex == 1) { /* Get the 2nd Input Capture value */ uwICValue2 = LL_TIM_IC_GetCaptureCH1(TIM3); /* Capture computation */ if (uwICValue2 > uwICValue1) { uwDiffCapture = (uwICValue2 - uwICValue1); }if (uwICValue2 > uwICValue1) { ... } else if (uwICValue2 < uwICValue1) { uwDiffCapture = ((TIM3_ARR_MAX - uwICValue1) + uwICValue2) + 1; }else if (uwICValue2 < uwICValue1) { ... } else { /* If capture values are equal, we have reached the limit of frequency */ /* measures. */ LED_Blinking(LED_BLINK_ERROR); }else { ... } /* The signal frequency is calculated as follows: */ /* Frequency = (TIM3*IC1PSC) / (Capture*(PSC+1)*IC1Polarity) */ /* where: */ /* Capture is the difference between two consecutive captures */ /* TIM3CLK is the timer counter clock frequency */ /* PSC is the timer prescaler value */ /* IC1PSC is the input capture prescaler value */ /* IC1Polarity value depends on the capture sensitivity: */ /* 1 if the input is sensitive to rising or falling edges */ /* 2 if the input is sensitive to both rising and falling edges */ /* Retrieve actual TIM3 counter clock frequency */ TIM3CLK = SystemCoreClock; /* Retrieve actual TIM3 prescaler value */ PSC = LL_TIM_GetPrescaler(TIM3); /* Retrieve actual IC1 prescaler ratio */ IC1PSC = __LL_TIM_GET_ICPSC_RATIO(LL_TIM_IC_GetPrescaler(TIM3, LL_TIM_CHANNEL_CH1)); /* Retrieve actual IC1 polarity setting */ if (LL_TIM_IC_GetPolarity(TIM3, LL_TIM_CHANNEL_CH1) == LL_TIM_IC_POLARITY_BOTHEDGE) IC1Polarity = 2; else IC1Polarity = 1; /* Calculate input signal frequency */ uwMeasuredFrequency = (TIM3CLK *IC1PSC) / (uwDiffCapture*(PSC+1)*IC1Polarity); /* reset capture index */ uhCaptureIndex = 0; }else if (uhCaptureIndex == 1) { ... } }{ ... } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None *//* ... */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d", file, line) *//* ... */ /* Infinite loop */ while (1) { }while (1) { ... } }assert_failed (uint8_t *file, uint32_t line) { ... } /* ... */#endif /** * @} *//* ... */ /** * @} *//* ... */
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.