Select one of the symbols to view example projects that use it.
 
Outline
#include "pico.h"
#include "hardware/regs/clocks.h"
#include "hardware/platform_defs.h"
#include "hardware/clocks.h"
#include "hardware/pll.h"
#include "hardware/irq.h"
#include "hardware/gpio.h"
configured_freq
_resus_callback
has_glitchless_mux(clock_handle_t)
clock_stop(clock_handle_t)
clock_configure_internal(clock_handle_t, uint32_t, uint32_t, uint32_t, uint32_t)
clock_configure(clock_handle_t, uint32_t, uint32_t, uint32_t, uint32_t)
clock_configure_int_divider(clock_handle_t, uint32_t, uint32_t, uint32_t, uint32_t)
clock_configure_undivided(clock_handle_t, uint32_t, uint32_t, uint32_t)
clock_get_hz(clock_handle_t)
clock_set_reported_hz(clock_handle_t, uint)
frequency_count_khz(uint)
clocks_handle_resus()
clocks_irq_handler()
clocks_enable_resus(resus_callback_t)
clock_gpio_init_int_frac(uint, uint, uint32_t, uint8_t)
gpin0_src
clock_configure_gpin(clock_handle_t, uint, uint32_t, uint32_t)
set_sys_clock_48mhz()
#define PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK
set_sys_clock_pll(uint32_t, uint, uint)
check_sys_clock_hz(uint32_t, uint *, uint *, uint *)
check_sys_clock_khz(uint32_t, uint *, uint *, uint *)
Files
loading...
SourceVuRaspberry Pi Pico SDK and ExamplesPicoSDKsrc/rp2_common/hardware_clocks/clocks.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause *//* ... */ #include "pico.h" #include "hardware/regs/clocks.h" #include "hardware/platform_defs.h" #include "hardware/clocks.h" #include "hardware/pll.h" #include "hardware/irq.h" #include "hardware/gpio.h" 7 includes check_hw_layout(clocks_hw_t, clk[clk_adc].selected, CLOCKS_CLK_ADC_SELECTED_OFFSET); check_hw_layout(clocks_hw_t, fc0.result, CLOCKS_FC0_RESULT_OFFSET); check_hw_layout(clocks_hw_t, ints, CLOCKS_INTS_OFFSET); static uint32_t configured_freq[CLK_COUNT]; static resus_callback_t _resus_callback; // Clock muxing consists of two components: // - A glitchless mux, which can be switched freely, but whose inputs must be // free-running // - An auxiliary (glitchy) mux, whose output glitches when switched, but has // no constraints on its inputs // Not all clocks have both types of mux. static inline bool has_glitchless_mux(clock_handle_t clock) { return clock == clk_sys || clock == clk_ref; }{ ... } void clock_stop(clock_handle_t clock) { clock_hw_t *clock_hw = &clocks_hw->clk[clock]; hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_USB_CTRL_ENABLE_BITS); configured_freq[clock] = 0; }{ ... } /// \tag::clock_configure[] static void clock_configure_internal(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t actual_freq, uint32_t div) { clock_hw_t *clock_hw = &clocks_hw->clk[clock]; // If increasing divisor, set divisor before source. Otherwise set source // before divisor. This avoids a momentary overspeed when e.g. switching // to a faster source and increasing divisor to compensate. if (div > clock_hw->div) clock_hw->div = div; // If switching a glitchless slice (ref or sys) to an aux source, switch // away from aux *first* to avoid passing glitches when changing aux mux. // Assume (!!!) glitchless source 0 is no faster than the aux source. if (has_glitchless_mux(clock) && src == CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) { hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS); while (!(clock_hw->selected & 1u)) tight_loop_contents(); }if (has_glitchless_mux(clock) && src == CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) { ... } // If no glitchless mux, cleanly stop the clock to avoid glitches // propagating when changing aux mux. Note it would be a really bad idea // to do this on one of the glitchless clocks (clk_sys, clk_ref). else { // Disable clock. On clk_ref and clk_sys this does nothing, // all other clocks have the ENABLE bit in the same position. hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS); if (configured_freq[clock] > 0) { // Delay for 3 cycles of the target clock, for ENABLE propagation. // Note XOSC_COUNT is not helpful here because XOSC is not // necessarily running, nor is timer... uint delay_cyc = configured_freq[clk_sys] / configured_freq[clock] + 1; busy_wait_at_least_cycles(delay_cyc * 3); }if (configured_freq[clock] > 0) { ... } }else { ... } // Set aux mux first, and then glitchless mux if this clock has one hw_write_masked(&clock_hw->ctrl, (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB), CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS ); if (has_glitchless_mux(clock)) { hw_write_masked(&clock_hw->ctrl, src << CLOCKS_CLK_REF_CTRL_SRC_LSB, CLOCKS_CLK_REF_CTRL_SRC_BITS ); while (!(clock_hw->selected & (1u << src))) tight_loop_contents(); }if (has_glitchless_mux(clock)) { ... } // Enable clock. On clk_ref and clk_sys this does nothing, // all other clocks have the ENABLE bit in the same position. hw_set_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS); // Now that the source is configured, we can trust that the user-supplied // divisor is a safe value. clock_hw->div = div; configured_freq[clock] = actual_freq; }{ ... } bool clock_configure(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq) { assert(src_freq >= freq); if (freq > src_freq) return false; uint32_t div = (uint32_t)((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / freq); uint32_t actual_freq = (uint32_t) ((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / div); clock_configure_internal(clock, src, auxsrc, actual_freq, div); // Store the configured frequency return true; }{ ... } void clock_configure_int_divider(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t int_divider) { clock_configure_internal(clock, src, auxsrc, src_freq / int_divider, int_divider << CLOCKS_CLK_GPOUT0_DIV_INT_LSB); }{ ... } void clock_configure_undivided(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq) { clock_configure_internal(clock, src, auxsrc, src_freq, 1u << CLOCKS_CLK_GPOUT0_DIV_INT_LSB); }{ ... } /// \end::clock_configure[] /// \tag::clock_get_hz[] uint32_t clock_get_hz(clock_handle_t clock) { return configured_freq[clock]; }{ ... } /// \end::clock_get_hz[] void clock_set_reported_hz(clock_handle_t clock, uint hz) { configured_freq[clock] = hz; }{ ... } /// \tag::frequency_count_khz[] uint32_t frequency_count_khz(uint src) { fc_hw_t *fc = &clocks_hw->fc0; // If frequency counter is running need to wait for it. It runs even if the source is NULL while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) { tight_loop_contents(); }while (fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) { ... } // Set reference freq fc->ref_khz = clock_get_hz(clk_ref) / 1000; // FIXME: Don't pick random interval. Use best interval fc->interval = 10; // No min or max fc->min_khz = 0; fc->max_khz = 0xffffffff; // Set SRC which automatically starts the measurement fc->src = src; while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) { tight_loop_contents(); }while (!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) { ... } // Return the result return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB; }{ ... } /// \end::frequency_count_khz[] static void clocks_handle_resus(void) { // Set clk_sys back to the ref clock rather than it being forced to clk_ref // by resus. Call the user's resus callback if they have set one // CLK SYS = CLK_REF. Must be running for this code to be running uint clk_ref_freq = clock_get_hz(clk_ref); clock_configure_undivided(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLK_REF, 0, clk_ref_freq); // Assert we have been resussed assert(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS); // Now we have fixed clk_sys we can safely remove the resus hw_set_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS); hw_clear_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS); // Now we should no longer be resussed assert(!(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS)); // Call the user's callback to notify them of the resus event if (_resus_callback) { _resus_callback(); }if (_resus_callback) { ... } }{ ... } static void clocks_irq_handler(void) { // Clocks interrupt handler. Only resus but handle irq // defensively just in case. uint32_t ints = clocks_hw->ints; if (ints & CLOCKS_INTE_CLK_SYS_RESUS_BITS) { ints &= ~CLOCKS_INTE_CLK_SYS_RESUS_BITS; clocks_handle_resus(); }if (ints & CLOCKS_INTE_CLK_SYS_RESUS_BITS) { ... } #ifndef NDEBUG if (ints) { panic("Unexpected clocks irq\n"); }if (ints) { ... } /* ... */#endif }{ ... } void clocks_enable_resus(resus_callback_t resus_callback) { // Restart clk_sys if it is stopped by forcing it // to the default source of clk_ref. If clk_ref stops running this will // not work. // Store user's resus callback _resus_callback = resus_callback; irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler); // Enable the resus interrupt in clocks clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS; // Enable the clocks irq irq_set_enabled(CLOCKS_IRQ, true); // 2 * clk_ref freq / clk_sys_min_freq; // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz uint timeout = 2 * 3 * 1; // Enable resus with the maximum timeout clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout; }{ ... } void clock_gpio_init_int_frac(uint gpio, uint src, uint32_t div_int, uint8_t div_frac) { // Bit messy but it's as much code to loop through a lookup // table. The sources for each gpout generators are the same // so just call with the sources from GP0 uint gpclk = 0; if (gpio == 21) gpclk = clk_gpout0; else if (gpio == 23) gpclk = clk_gpout1; else if (gpio == 24) gpclk = clk_gpout2; else if (gpio == 25) gpclk = clk_gpout3; #if !PICO_RP2040 else if (gpio == 13) gpclk = clk_gpout0; else if (gpio == 15) gpclk = clk_gpout1;/* ... */ #endif else { invalid_params_if(HARDWARE_CLOCKS, true); }else { ... } // Set up the gpclk generator clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) | CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS; clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | div_frac; // Set gpio pin to gpclock function gpio_set_function(gpio, GPIO_FUNC_GPCK); }{ ... } static const uint8_t gpin0_src[CLK_COUNT] = { CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT0 CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT1 CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT2 CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT3 CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_REF CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_SYS CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_PERI #if !PICO_RP2040 CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_HSTX #endif CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_USB CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_ADC #if PICO_RP2040 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_RTC #endif ...}; // Assert GPIN1 is GPIN0 + 1 static_assert(CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); #if HAS_HSTX static_assert(CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); #endif static_assert(CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); #if HAS_RP2040_RTC static_assert(CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); #endif bool clock_configure_gpin(clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq) { // Configure a clock to run from a GPIO input uint gpin = 0; if (gpio == 20) gpin = 0; else if (gpio == 22) gpin = 1; #if PICO_RP2350 else if (gpio == 12) gpin = 0; else if (gpio == 14) gpin = 1;/* ... */ #endif else { invalid_params_if(HARDWARE_CLOCKS, true); }else { ... } // Work out sources. GPIN is always an auxsrc uint src = 0; // GPIN1 == GPIN0 + 1 uint auxsrc = gpin0_src[clock] + gpin; if (has_glitchless_mux(clock)) { // AUX src is always 1 src = 1; }if (has_glitchless_mux(clock)) { ... } // Set the GPIO function gpio_set_function(gpio, GPIO_FUNC_GPCK); // Now we have the src, auxsrc, and configured the gpio input // call clock configure to run the clock from a gpio return clock_configure(clock, src, auxsrc, src_freq, freq); }{ ... } // everything running off the USB oscillator void set_sys_clock_48mhz(void) { if (!running_on_fpga()) { // Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB // which has a source frequency of 48MHz clock_configure_undivided(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, USB_CLK_HZ); // Turn off PLL sys for good measure pll_deinit(pll_sys); // CLK peri is clocked from clk_sys so need to change clk_peri's freq clock_configure_undivided(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS, USB_CLK_HZ); }if (!running_on_fpga()) { ... } }{ ... } // PICO_CONFIG: PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK, When the SYS clock PLL is changed keep the peripheral clock attached to it, type=bool, default=0, advanced=true, group=hardware_clocks #ifndef PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK // By default, when reconfiguring the system clock PLL settings after runtime initialization, // the peripheral clock is switched to the 48MHz USB clock to ensure continuity of peripheral operation. // Setting this value to 1 changes the behavior to have the peripheral clock re-configured // to the system clock at it's new frequency. #define PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK 0 /* ... */#endif void set_sys_clock_pll(uint32_t vco_freq, uint post_div1, uint post_div2) { if (!running_on_fpga()) { clock_configure_undivided(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, USB_CLK_HZ); pll_init(pll_sys, PLL_SYS_REFDIV, vco_freq, post_div1, post_div2); uint32_t freq = vco_freq / (post_div1 * post_div2); // Configure clocks // CLK_REF is the XOSC source clock_configure_undivided(clk_ref, CLOCKS_CLK_REF_CTRL_SRC_VALUE_XOSC_CLKSRC, 0, // No aux mux XOSC_HZ); // CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz clock_configure_undivided(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, freq); #if PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK clock_configure_undivided(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, freq);/* ... */ #else clock_configure_undivided(clk_peri, 0, // Only AUX mux on ADC CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, USB_CLK_HZ);/* ... */ #endif }if (!running_on_fpga()) { ... } }{ ... } bool check_sys_clock_hz(uint32_t freq_hz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) { uint reference_freq_hz = XOSC_HZ / PLL_SYS_REFDIV; for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) { uint vco_hz = fbdiv * reference_freq_hz; if (vco_hz < PICO_PLL_VCO_MIN_FREQ_HZ || vco_hz > PICO_PLL_VCO_MAX_FREQ_HZ) continue; for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) { for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) { uint out = vco_hz / (postdiv1 * postdiv2); if (out == freq_hz && !(vco_hz % (postdiv1 * postdiv2))) { *vco_out = vco_hz; *postdiv1_out = postdiv1; *postdiv2_out = postdiv2; return true; }if (out == freq_hz && !(vco_hz % (postdiv1 * postdiv2))) { ... } }for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) { ... } }for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) { ... } }for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) { ... } return false; }{ ... } // Note this impl is kept to preserve previous rounding behavior, vs calling check_sys_clock_hz bool check_sys_clock_khz(uint32_t freq_khz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) { uint reference_freq_khz = (XOSC_HZ / KHZ) / PLL_SYS_REFDIV; for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) { uint vco_khz = fbdiv * reference_freq_khz; if (vco_khz < PICO_PLL_VCO_MIN_FREQ_HZ / KHZ || vco_khz > PICO_PLL_VCO_MAX_FREQ_HZ / KHZ) continue; for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) { for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) { uint out = vco_khz / (postdiv1 * postdiv2); if (out == freq_khz && !(vco_khz % (postdiv1 * postdiv2))) { *vco_out = vco_khz * KHZ; *postdiv1_out = postdiv1; *postdiv2_out = postdiv2; return true; }if (out == freq_khz && !(vco_khz % (postdiv1 * postdiv2))) { ... } }for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) { ... } }for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) { ... } }for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) { ... } return false; }{ ... }
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.