1
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
39
40
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
75
87
88
89
90
91
92
93
94
95
96
97
98
104
105
108
109
110
111
122
123
124
125
126
127
128
129
130
131
134
135
140
141
142
143
144
145
146
147
148
149
150
155
156
157
158
159
160
172
173
174
175
179
180
181
185
186
187
188
189
190
191
192
193
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/* ... */
#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/uart.h"
#include "esp_log.h"
#include "esp_attr.h"
#include "uart_driver.h"
#include "nimble/hci_common.h"
#include "host/ble_hs_mbuf.h"11 includes
#define TAG "UART_HCI"
#define UART_NO (1)
#define UART_BUF_SZ (1024)
#define UART_TX_PIN (CONFIG_EXAMPLE_HCI_UART_TX_PIN)
#define UART_RX_PIN (CONFIG_EXAMPLE_HCI_UART_RX_PIN)
#define UART_RTS_PIN (CONFIG_EXAMPLE_HCI_UART_RTS_PIN)
#define UART_CTS_PIN (CONFIG_EXAMPLE_HCI_UART_CTS_PIN)
#define HCI_H4_ACL (0x02)
#define HCI_H4_CMD (0x01)
#define HCI_H4_EVT (0x04)
#define BLE_HCI_EVENT_HDR_LEN (2)
#define BLE_HCI_CMD_HDR_LEN (3)12 defines
enum {
UART_RX_TYPE = 0,
UART_RX_LEN,
UART_RX_DATA,
}{ ... };
enum {
DATA_TYPE_COMMAND = 1,
DATA_TYPE_ACL = 2,
DATA_TYPE_EVENT = 4
}{ ... };
TaskHandle_t s_rx_task_hdl;
static void IRAM_ATTR hci_uart_rx_task(void *arg)
{
uint8_t buf[1026];
int len_now_read = -1;
uint32_t len_to_read = 1;
uint32_t len_total_read = 0;
uint8_t rx_st = UART_RX_TYPE;
while (1) {
len_now_read = uart_read_bytes(UART_NO, &buf[len_total_read], len_to_read, portMAX_DELAY);
assert(len_now_read == len_to_read);
len_total_read += len_now_read;
switch (rx_st) {
case UART_RX_TYPE: {
assert(buf[0] >= DATA_TYPE_ACL && buf[0] <= DATA_TYPE_EVENT);
if (buf[0] == DATA_TYPE_ACL) {
len_to_read = 4;
}{...} else if (buf[0] == DATA_TYPE_EVENT) {
len_to_read = 2;
}{...} else {
assert(0);
}{...}
rx_st = UART_RX_LEN;
}{...}
break;
...
case UART_RX_LEN: {
if (buf[0] == DATA_TYPE_ACL) {
len_to_read = buf[3] | (buf[4] << 8);
}{...} else if (buf[0] == DATA_TYPE_EVENT) {
len_to_read = buf[2];
}{...} else {
assert(0);
}{...}
rx_st = UART_RX_DATA;
}{...}
break;
...
case UART_RX_DATA: {
uint8_t *data = buf;
int rc;
if (data[0] == HCI_H4_EVT) {
uint8_t *evbuf;
int totlen;
totlen = BLE_HCI_EVENT_HDR_LEN + data[2];
assert(totlen <= UINT8_MAX + BLE_HCI_EVENT_HDR_LEN);
if (totlen > MYNEWT_VAL(BLE_TRANSPORT_EVT_SIZE)) {
ESP_LOGE(TAG, "Received HCI data length at host (%d)"
"exceeds maximum configured HCI event buffer size (%d).",
totlen, MYNEWT_VAL(BLE_TRANSPORT_EVT_SIZE));
break;
}{...}
if (data[1] == BLE_HCI_EVCODE_HW_ERROR) {
assert(0);
}{...}
if ((data[1] == BLE_HCI_EVCODE_LE_META) &&
(data[3] == BLE_HCI_LE_SUBEV_ADV_RPT || data[3] == BLE_HCI_LE_SUBEV_EXT_ADV_RPT)) {
evbuf = ble_transport_alloc_evt(1);
if (!evbuf) {
ESP_LOGE(TAG, "No buffers");
break;
}{...}
}{...} else {
evbuf = ble_transport_alloc_evt(0);
assert(evbuf != NULL);
}{...}
memset(evbuf, 0, sizeof * evbuf);
memcpy(evbuf, &data[1], totlen);
rc = ble_transport_to_hs_evt(evbuf);
assert(rc == 0);
}{...} else if (data[0] == HCI_H4_ACL) {
struct os_mbuf *m = NULL;
m = ble_transport_alloc_acl_from_ll();
if (!m) {
ESP_LOGE(TAG, "No buffers");
}{...}
if ((rc = os_mbuf_append(m, &data[1], len_total_read - 1)) != 0) {
ESP_LOGE(TAG, "%s failed to os_mbuf_append; rc = %d", __func__, rc);
os_mbuf_free_chain(m);
return;
}{...}
ble_transport_to_hs_acl(m);
}{...}
rx_st = UART_RX_TYPE;
len_to_read = 1;
len_total_read = 0;
}{...}
break;
...
default: {
assert(0);
break;
}{...}
... }{...}
}{...}
vTaskDelete(NULL);
}{ ... }
void hci_uart_send(uint8_t *buf, uint16_t len)
{
uint8_t *p = buf;
int len_write = 0;
while (len) {
len_write = uart_write_bytes(UART_NO, p, len);
assert(len_write > 0);
len -= len_write;
p += len_write;
}{...}
}{ ... }
void
ble_transport_ll_init(void)
{
}{ ... }
void
ble_transport_ll_deinit(void)
{
}{ ... }
int
ble_transport_to_ll_acl_impl(struct os_mbuf *om)
{
uint8_t buf[OS_MBUF_PKTLEN(om) + 1];
int rc;
buf[0] = HCI_H4_ACL;
rc = ble_hs_mbuf_to_flat(om, buf + 1, OS_MBUF_PKTLEN(om), NULL);
if(rc) {
ESP_LOGE(TAG, "Error copying data %d", rc);
os_mbuf_free_chain(om);
return rc;
}{...}
hci_uart_send(buf, OS_MBUF_PKTLEN(om) + 1);
os_mbuf_free_chain(om);
return 0;
}{ ... }
int
ble_transport_to_ll_cmd_impl(void *buf)
{
int len = 3 + ((uint8_t *)buf)[2] + 1;
uint8_t data[258];
data[0] = HCI_H4_CMD;
memcpy(data + 1, buf, len - 1);
hci_uart_send(data, len);
ble_transport_free(buf);
return 0;
}{ ... }
void hci_uart_open(void)
{
uart_config_t uart_config = {
.baud_rate = CONFIG_EXAMPLE_HCI_UART_BAUDRATE,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = CONFIG_EXAMPLE_HCI_UART_FLOW_CTRL,
.source_clk = UART_SCLK_DEFAULT,
}{...};
int intr_alloc_flags = 0;
#if CONFIG_UART_ISR_IN_IRAM
intr_alloc_flags = ESP_INTR_FLAG_IRAM;
#endif
ESP_ERROR_CHECK(uart_driver_install(UART_NO, UART_BUF_SZ * 2, UART_BUF_SZ * 2, 0, NULL, intr_alloc_flags));
ESP_ERROR_CHECK(uart_param_config(UART_NO, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(UART_NO, UART_TX_PIN, UART_RX_PIN, -1, -1));
xTaskCreate(hci_uart_rx_task, "hci_uart_rx_task", 2048, NULL, 12, &s_rx_task_hdl);
}{ ... }
void hci_uart_close(void)
{
if (s_rx_task_hdl) {
vTaskDelete(s_rx_task_hdl);
}{...}
uart_driver_delete(UART_NO);
}{ ... }