Select one of the symbols to view example projects that use it.
 
Outline
#include <inttypes.h>
#include "esp_log.h"
#include "esp_timer.h"
#include "esp_private/sdmmc_common.h"
TAG
sdmmc_init_ocr(sdmmc_card_t *)
sdmmc_init_cid(sdmmc_card_t *)
sdmmc_init_rca(sdmmc_card_t *)
sdmmc_init_mmc_decode_cid(sdmmc_card_t *)
sdmmc_init_csd(sdmmc_card_t *)
sdmmc_init_select_card(sdmmc_card_t *)
sdmmc_init_card_hs_mode(sdmmc_card_t *)
sdmmc_init_sd_driver_strength(sdmmc_card_t *)
sdmmc_init_sd_current_limit(sdmmc_card_t *)
sdmmc_init_sd_timing_tuning(sdmmc_card_t *)
sdmmc_init_host_bus_width(sdmmc_card_t *)
sdmmc_init_host_frequency(sdmmc_card_t *)
sdmmc_flip_byte_order(uint32_t *, size_t)
sdmmc_card_print_info(FILE *, const sdmmc_card_t *)
sdmmc_fix_host_flags(sdmmc_card_t *)
sdmmc_allocate_aligned_buf(sdmmc_card_t *)
sdmmc_get_erase_timeout_ms(const sdmmc_card_t *, int, size_t)
sdmmc_wait_for_idle(sdmmc_card_t *, uint32_t)
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/sdmmc/sdmmc_common.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org> * Adaptations to ESP-IDF Copyright (c) 2016-2024 Espressif Systems (Shanghai) PTE LTD * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *//* ... */ #include <inttypes.h> #include "esp_log.h" #include "esp_timer.h" #include "esp_private/sdmmc_common.h" static const char* TAG = "sdmmc_common"; esp_err_t sdmmc_init_ocr(sdmmc_card_t* card) { esp_err_t err; /* In SPI mode, READ_OCR (CMD58) command is used to figure out which voltage * ranges the card can support. This step is skipped since 1.8V isn't * supported on the ESP32. *//* ... */ uint32_t host_ocr = get_host_ocr(card->host.io_voltage); /* In SPI mode, the only non-zero bit of ACMD41 is HCS (bit 30) * In SD mode, bits 23:8 contain the supported voltage mask *//* ... */ uint32_t acmd41_arg = 0; if (!host_is_spi(card)) { acmd41_arg = host_ocr; }{...} if ((card->ocr & SD_OCR_SDHC_CAP) != 0) { acmd41_arg |= SD_OCR_SDHC_CAP; }{...} bool to_set_to_uhs1 = false; if (card->host.is_slot_set_to_uhs1) { ESP_RETURN_ON_ERROR(card->host.is_slot_set_to_uhs1(card->host.slot, &to_set_to_uhs1), TAG, "failed to get slot info"); }{...} if (to_set_to_uhs1) { acmd41_arg |= SD_OCR_S18_RA; acmd41_arg |= SD_OCR_XPC; }{...} ESP_LOGV(TAG, "%s: acmd41_arg=0x%08" PRIx32, __func__, card->ocr); /* Send SEND_OP_COND (ACMD41) command to the card until it becomes ready. */ err = sdmmc_send_cmd_send_op_cond(card, acmd41_arg, &card->ocr); /* If time-out, re-try send_op_cond as MMC */ if (err == ESP_ERR_TIMEOUT && !host_is_spi(card)) { ESP_LOGD(TAG, "send_op_cond timeout, trying MMC"); card->is_mmc = 1; err = sdmmc_send_cmd_send_op_cond(card, acmd41_arg, &card->ocr); }{...} if (err != ESP_OK) { ESP_LOGE(TAG, "%s: send_op_cond (1) returned 0x%x", __func__, err); return err; }{...} if (host_is_spi(card)) { err = sdmmc_send_cmd_read_ocr(card, &card->ocr); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: read_ocr returned 0x%x", __func__, err); return err; }{...} }{...} ESP_LOGD(TAG, "host_ocr=0x%" PRIx32 " card_ocr=0x%" PRIx32, host_ocr, card->ocr); /* Clear all voltage bits in host's OCR which the card doesn't support. * Don't touch CCS bit because in SPI mode cards don't report CCS in ACMD41 * response. *//* ... */ host_ocr &= (card->ocr | (~SD_OCR_VOL_MASK)); ESP_LOGD(TAG, "sdmmc_card_init: host_ocr=%08" PRIx32 ", card_ocr=%08" PRIx32, host_ocr, card->ocr); return ESP_OK; }{ ... } esp_err_t sdmmc_init_cid(sdmmc_card_t* card) { esp_err_t err; sdmmc_response_t raw_cid; if (!host_is_spi(card)) { err = sdmmc_send_cmd_all_send_cid(card, &raw_cid); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: all_send_cid returned 0x%x", __func__, err); return err; }{...} if (!card->is_mmc) { err = sdmmc_decode_cid(raw_cid, &card->cid); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: decoding CID failed (0x%x)", __func__, err); return err; }{...} }{...} else { /* For MMC, need to know CSD to decode CID. But CSD can only be read * in data transfer mode, and it is not possible to read CID in data * transfer mode. We temporiliy store the raw cid and do the * decoding after the RCA is set and the card is in data transfer * mode. *//* ... */ memcpy(card->raw_cid, raw_cid, sizeof(sdmmc_response_t)); }{...} }{...} else { err = sdmmc_send_cmd_send_cid(card, &card->cid); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: send_cid returned 0x%x", __func__, err); return err; }{...} }{...} return ESP_OK; }{ ... } esp_err_t sdmmc_init_rca(sdmmc_card_t* card) { esp_err_t err; err = sdmmc_send_cmd_set_relative_addr(card, &card->rca); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: set_relative_addr returned 0x%x", __func__, err); return err; }{...} return ESP_OK; }{ ... } esp_err_t sdmmc_init_mmc_decode_cid(sdmmc_card_t* card) { esp_err_t err; sdmmc_response_t raw_cid; memcpy(raw_cid, card->raw_cid, sizeof(raw_cid)); err = sdmmc_mmc_decode_cid(card->csd.mmc_ver, raw_cid, &card->cid); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: decoding CID failed (0x%x)", __func__, err); return err; }{...} return ESP_OK; }{ ... } esp_err_t sdmmc_init_csd(sdmmc_card_t* card) { assert(card->is_mem == 1); /* Get and decode the contents of CSD register. Determine card capacity. */ esp_err_t err = sdmmc_send_cmd_send_csd(card, &card->csd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: send_csd returned 0x%x", __func__, err); return err; }{...} const size_t max_sdsc_capacity = UINT32_MAX / card->csd.sector_size + 1; if (!(card->ocr & SD_OCR_SDHC_CAP) && card->csd.capacity > max_sdsc_capacity) { ESP_LOGW(TAG, "%s: SDSC card reports capacity=%u. Limiting to %u.", __func__, card->csd.capacity, max_sdsc_capacity); card->csd.capacity = max_sdsc_capacity; }{...} return ESP_OK; }{ ... } esp_err_t sdmmc_init_select_card(sdmmc_card_t* card) { assert(!host_is_spi(card)); esp_err_t err = sdmmc_send_cmd_select_card(card, card->rca); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: select_card returned 0x%x", __func__, err); return err; }{...} return ESP_OK; }{ ... } esp_err_t sdmmc_init_card_hs_mode(sdmmc_card_t* card) { esp_err_t err = ESP_ERR_NOT_SUPPORTED; if (card->is_mem && !card->is_mmc) { err = sdmmc_enable_hs_mode_and_check(card); }{...} else if (card->is_sdio) { err = sdmmc_io_enable_hs_mode(card); }{...} else if (card->is_mmc){ err = sdmmc_mmc_enable_hs_mode(card); }{...} if (err == ESP_ERR_NOT_SUPPORTED) { ESP_LOGD(TAG, "%s: host supports HS mode, but card doesn't", __func__); card->max_freq_khz = SDMMC_FREQ_DEFAULT; }{...} else if (err != ESP_OK) { return err; }{...} return ESP_OK; }{ ... } esp_err_t sdmmc_init_sd_driver_strength(sdmmc_card_t *card) { return sdmmc_select_driver_strength(card, card->host.driver_strength); }{ ... } esp_err_t sdmmc_init_sd_current_limit(sdmmc_card_t *card) { return sdmmc_select_current_limit(card, card->host.current_limit); }{ ... } esp_err_t sdmmc_init_sd_timing_tuning(sdmmc_card_t *card) { return sdmmc_do_timing_tuning(card); }{ ... } esp_err_t sdmmc_init_host_bus_width(sdmmc_card_t* card) { int bus_width = 1; if ((card->host.flags & SDMMC_HOST_FLAG_4BIT) && (card->log_bus_width == 2)) { bus_width = 4; }{...} else if ((card->host.flags & SDMMC_HOST_FLAG_8BIT) && (card->log_bus_width == 3)) { bus_width = 8; }{...} ESP_LOGD(TAG, "%s: using %d-bit bus", __func__, bus_width); if (bus_width > 1) { esp_err_t err = (*card->host.set_bus_width)(card->host.slot, bus_width); if (err != ESP_OK) { ESP_LOGE(TAG, "host.set_bus_width failed (0x%x)", err); return err; }{...} }{...} return ESP_OK; }{ ... } esp_err_t sdmmc_init_host_frequency(sdmmc_card_t* card) { esp_err_t err; assert(card->max_freq_khz <= card->host.max_freq_khz); #if !SOC_SDMMC_UHS_I_SUPPORTED ESP_RETURN_ON_FALSE(card->host.input_delay_phase != SDMMC_DELAY_PHASE_AUTO, ESP_ERR_INVALID_ARG, TAG, "auto tuning not supported"); #endif if (card->host.input_delay_phase == SDMMC_DELAY_PHASE_AUTO) { ESP_RETURN_ON_FALSE((card->host.max_freq_khz == SDMMC_FREQ_SDR50 || card->host.max_freq_khz == SDMMC_FREQ_SDR104), ESP_ERR_INVALID_ARG, TAG, "auto tuning only supported for SDR50 / SDR104"); }{...} if (card->max_freq_khz > SDMMC_FREQ_PROBING) { err = (*card->host.set_card_clk)(card->host.slot, card->max_freq_khz); if (err != ESP_OK) { ESP_LOGE(TAG, "failed to switch bus frequency (0x%x)", err); return err; }{...} }{...} if (card->host.input_delay_phase != SDMMC_DELAY_PHASE_0) { if (card->host.set_input_delay) { err = (*card->host.set_input_delay)(card->host.slot, card->host.input_delay_phase); if (err != ESP_OK) { ESP_LOGE(TAG, "host.set_input_delay failed (0x%x)", err); return err; }{...} }{...} else { ESP_LOGE(TAG, "input phase delay feature isn't supported"); return ESP_ERR_NOT_SUPPORTED; }{...} }{...} err = (*card->host.get_real_freq)(card->host.slot, &(card->real_freq_khz)); if (err != ESP_OK) { ESP_LOGE(TAG, "failed to get real working frequency (0x%x)", err); return err; }{...} if (card->is_ddr) { if (card->host.set_bus_ddr_mode == NULL) { ESP_LOGE(TAG, "host doesn't support DDR mode or voltage switching"); return ESP_ERR_NOT_SUPPORTED; }{...} err = (*card->host.set_bus_ddr_mode)(card->host.slot, true); if (err != ESP_OK) { ESP_LOGE(TAG, "failed to switch bus to DDR mode (0x%x)", err); return err; }{...} }{...} return ESP_OK; }{ ... } void sdmmc_flip_byte_order(uint32_t* response, size_t size) { assert(size % (2 * sizeof(uint32_t)) == 0); const size_t n_words = size / sizeof(uint32_t); for (int i = 0; i < n_words / 2; ++i) { uint32_t left = __builtin_bswap32(response[i]); uint32_t right = __builtin_bswap32(response[n_words - i - 1]); response[i] = right; response[n_words - i - 1] = left; }{...} }{ ... } void sdmmc_card_print_info(FILE* stream, const sdmmc_card_t* card) { bool print_scr = false; bool print_csd = false; const char* type; fprintf(stream, "Name: %s\n", card->cid.name); if (card->is_sdio) { type = "SDIO"; print_scr = true; print_csd = true; }{...} else if (card->is_mmc) { type = "MMC"; print_csd = true; }{...} else { if ((card->ocr & SD_OCR_SDHC_CAP) == 0) { type = "SDSC"; }{...} else { if (card->ocr & SD_OCR_S18_RA) { type = "SDHC/SDXC (UHS-I)"; }{...} else { type = "SDHC"; }{...} }{...} print_csd = true; }{...} fprintf(stream, "Type: %s\n", type); if (card->real_freq_khz == 0) { fprintf(stream, "Speed: N/A\n"); }{...} else { const char *freq_unit = card->real_freq_khz < 1000 ? "kHz" : "MHz"; const float freq = card->real_freq_khz < 1000 ? card->real_freq_khz : card->real_freq_khz / 1000.0; const char *max_freq_unit = card->max_freq_khz < 1000 ? "kHz" : "MHz"; const float max_freq = card->max_freq_khz < 1000 ? card->max_freq_khz : card->max_freq_khz / 1000.0; fprintf(stream, "Speed: %.2f %s (limit: %.2f %s)%s\n", freq, freq_unit, max_freq, max_freq_unit, card->is_ddr ? ", DDR" : ""); }{...} fprintf(stream, "Size: %lluMB\n", ((uint64_t) card->csd.capacity) * card->csd.sector_size / (1024 * 1024)); if (print_csd) { fprintf(stream, "CSD: ver=%d, sector_size=%d, capacity=%d read_bl_len=%d\n", (int) (card->is_mmc ? card->csd.csd_ver : card->csd.csd_ver + 1), card->csd.sector_size, card->csd.capacity, card->csd.read_block_len); if (card->is_mmc) { fprintf(stream, "EXT CSD: bus_width=%" PRIu32 "\n", (uint32_t) (1 << card->log_bus_width)); }{...} else if (!card->is_sdio){ // make sure card is SD fprintf(stream, "SSR: bus_width=%" PRIu32 "\n", (uint32_t) (card->ssr.cur_bus_width ? 4 : 1)); }{...} }{...} if (print_scr) { fprintf(stream, "SCR: sd_spec=%d, bus_width=%d\n", card->scr.sd_spec, card->scr.bus_width); }{...} }{ ... } esp_err_t sdmmc_fix_host_flags(sdmmc_card_t* card) { const uint32_t width_1bit = SDMMC_HOST_FLAG_1BIT; const uint32_t width_4bit = SDMMC_HOST_FLAG_4BIT; const uint32_t width_8bit = SDMMC_HOST_FLAG_8BIT; const uint32_t width_mask = width_1bit | width_4bit | width_8bit; int slot_bit_width = card->host.get_bus_width(card->host.slot); if (slot_bit_width == 1 && (card->host.flags & (width_4bit | width_8bit))) { card->host.flags &= ~width_mask; card->host.flags |= width_1bit; }{...} else if (slot_bit_width == 4 && (card->host.flags & width_8bit)) { if ((card->host.flags & width_4bit) == 0) { ESP_LOGW(TAG, "slot width set to 4, but host flags don't have 4 line mode enabled; using 1 line mode"); card->host.flags &= ~width_mask; card->host.flags |= width_1bit; }{...} else { card->host.flags &= ~width_mask; card->host.flags |= width_4bit; }{...} }{...} #if !SOC_SDMMC_UHS_I_SUPPORTED if ((card->host.max_freq_khz == SDMMC_FREQ_SDR50) || (card->host.max_freq_khz == SDMMC_FREQ_DDR50) || (card->host.max_freq_khz == SDMMC_FREQ_SDR104)) { ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "UHS-I is not supported"); }{...} #else/* ... */ if (card->host.max_freq_khz == SDMMC_FREQ_DDR50) { ESP_RETURN_ON_FALSE(((card->host.flags & SDMMC_HOST_FLAG_DDR) != 0), ESP_ERR_INVALID_ARG, TAG, "DDR is not selected"); }{...} #endif/* ... */ return ESP_OK; }{ ... } esp_err_t sdmmc_allocate_aligned_buf(sdmmc_card_t* card) { if (card->host.flags & SDMMC_HOST_FLAG_ALLOC_ALIGNED_BUF) { void* buf = NULL; size_t actual_size = 0; esp_dma_mem_info_t dma_mem_info; card->host.get_dma_info(card->host.slot, &dma_mem_info); esp_err_t ret = esp_dma_capable_malloc(SDMMC_IO_BLOCK_SIZE, &dma_mem_info, &buf, &actual_size); if (ret != ESP_OK) { return ret; }{...} assert(actual_size == SDMMC_IO_BLOCK_SIZE); card->host.dma_aligned_buffer = buf; }{...} return ESP_OK; }{ ... } uint32_t sdmmc_get_erase_timeout_ms(const sdmmc_card_t* card, int arg, size_t erase_size_kb) { if (card->is_mmc) { return sdmmc_mmc_get_erase_timeout_ms(card, arg, erase_size_kb); }{...} else { return sdmmc_sd_get_erase_timeout_ms(card, arg, erase_size_kb); }{...} }{ ... } esp_err_t sdmmc_wait_for_idle(sdmmc_card_t* card, uint32_t status) { assert(!host_is_spi(card)); esp_err_t err = ESP_OK; size_t count = 0; int64_t yield_delay_us = 100 * 1000; // initially 100ms int64_t t0 = esp_timer_get_time(); int64_t t1 = 0; /* SD mode: wait for the card to become idle based on R1 status */ while (!sdmmc_ready_for_data(status)) { t1 = esp_timer_get_time(); if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) { return ESP_ERR_TIMEOUT; }{...} if (t1 - t0 > yield_delay_us) { yield_delay_us *= 2; vTaskDelay(1); }{...} err = sdmmc_send_cmd_send_status(card, &status); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err); return err; }{...} if (++count % 16 == 0) { ESP_LOGV(TAG, "waiting for card to become ready (%" PRIu32 ")", (uint32_t) count); }{...} }{...} return err; }{ ... }
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.