Select one of the symbols to view example projects that use it.
 
Outline
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_cpu.h"
#include "soc/wdev_reg.h"
#include "esp_private/esp_clk.h"
#include "esp_private/startup_internal.h"
#include "soc/soc_caps.h"
#include "hal/lp_timer_hal.h"
#include "hal/lp_clkrst_ll.h"
#define APB_CYCLE_WAIT_NUM
#define APB_CYCLE_WAIT_NUM
#define APB_CYCLE_WAIT_NUM
esp_random()
esp_fill_random(void *, size_t)
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/esp_hw_support/hw_random.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * SPDX-FileCopyrightText: 2016-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 *//* ... */ #include <stdint.h> #include <stddef.h> #include <string.h> #include <sys/param.h> #include "esp_attr.h" #include "esp_cpu.h" #include "soc/wdev_reg.h" #include "esp_private/esp_clk.h" #include "esp_private/startup_internal.h" #include "soc/soc_caps.h"10 includes #if SOC_LP_TIMER_SUPPORTED #include "hal/lp_timer_hal.h" #endif #if SOC_RNG_CLOCK_IS_INDEPENDENT #include "hal/lp_clkrst_ll.h" #endif #if defined CONFIG_IDF_TARGET_ESP32S3 #define APB_CYCLE_WAIT_NUM (1778) /* If APB clock is 80 MHz, the maximum sampling frequency is around 45 KHz*/ /* 45 KHz reading frequency is the maximum we have tested so far on S3 *//* ... */ #elif defined CONFIG_IDF_TARGET_ESP32C6 #define APB_CYCLE_WAIT_NUM (160 * 16) /* On ESP32C6, we only read one byte at a time, then XOR the value with * an asynchronous timer (see code below). * The current value translates to a sampling frequency of around 62.5 KHz * for reading 8 bit samples, which is the rate at which the RNG was tested, * plus additional overhead for the calculation, making it slower. *//* ... */ /* ... */#elif defined CONFIG_IDF_TARGET_ESP32H2 #define APB_CYCLE_WAIT_NUM (96 * 16) /* Same reasoning as for ESP32C6, but the CPU frequency on ESP32H2 is * 96MHz instead of 160 MHz *//* ... */ /* ... */#elif defined CONFIG_IDF_TARGET_ESP32P4 /* On ESP32P4, the RNG has been tested with around 75 KHz bytes reading frequency */ #define APB_CYCLE_WAIT_NUM (CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ * 14)/* ... */ #else #define APB_CYCLE_WAIT_NUM (16) #endif uint32_t IRAM_ATTR esp_random(void) { /* The PRNG which implements WDEV_RANDOM register gets 2 bits * of extra entropy from a hardware randomness source every APB clock cycle * (provided WiFi or BT are enabled). To make sure entropy is not drained * faster than it is added, this function needs to wait for at least 16 APB * clock cycles after reading previous word. This implementation may actually * wait a bit longer due to extra time spent in arithmetic and branch statements. * * As a (probably unnecessary) precaution to avoid returning the * RNG state as-is, the result is XORed with additional * WDEV_RND_REG reads while waiting. *//* ... */ /* This code does not run in a critical section, so CPU frequency switch may * happens while this code runs (this will not happen in the current * implementation, but possible in the future). However if that happens, * the number of cycles spent on frequency switching will certainly be more * than the number of cycles we need to wait here. *//* ... */ uint32_t cpu_to_apb_freq_ratio = esp_clk_cpu_freq() / esp_clk_apb_freq(); static uint32_t last_ccount = 0; uint32_t ccount; uint32_t result = 0; #if SOC_LP_TIMER_SUPPORTED for (size_t i = 0; i < sizeof(result); i++) { do { ccount = esp_cpu_get_cycle_count(); result ^= REG_READ(WDEV_RND_REG); }{...} while (ccount - last_ccount < cpu_to_apb_freq_ratio * APB_CYCLE_WAIT_NUM); uint32_t current_rtc_timer_counter = (lp_timer_hal_get_cycle_count() & 0xFF); result ^= ((result ^ current_rtc_timer_counter) & 0xFF) << (i * 8); }{...} #else/* ... */ do { ccount = esp_cpu_get_cycle_count(); result ^= REG_READ(WDEV_RND_REG); }{...} while (ccount - last_ccount < cpu_to_apb_freq_ratio * APB_CYCLE_WAIT_NUM);/* ... */ #endif last_ccount = ccount; return result ^ REG_READ(WDEV_RND_REG); }{ ... } void esp_fill_random(void *buf, size_t len) { assert(buf != NULL); uint8_t *buf_bytes = (uint8_t *)buf; while (len > 0) { uint32_t word = esp_random(); uint32_t to_copy = MIN(sizeof(word), len); memcpy(buf_bytes, &word, to_copy); buf_bytes += to_copy; len -= to_copy; }{...} }{ ... } #if SOC_RNG_CLOCK_IS_INDEPENDENT ESP_SYSTEM_INIT_FN(init_rng_clock, SECONDARY, BIT(0), 102) { _lp_clkrst_ll_enable_rng_clock(true); return ESP_OK; }{...} #endif
Details
Show:
from
Types: Columns: