Select one of the symbols to view example projects that use it.
 
Outline
#include <string.h>
#include <sys/param.h>
#include "esp_private/periph_ctrl.h"
#include "esp_private/spi_common_internal.h"
#include "esp_private/spi_master_internal.h"
#include "driver/spi_master.h"
#include "esp_clk_tree.h"
#include "clk_ctrl_os.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_ipc.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "soc/soc_memory_layout.h"
#include "driver/gpio.h"
#include "hal/spi_hal.h"
#include "hal/spi_ll.h"
#include "hal/hal_utils.h"
#include "esp_heap_caps.h"
#include "esp_cache.h"
#define SPI_MASTER_ISR_ATTR
#define SPI_MASTER_ISR_ATTR
#define SPI_MASTER_ATTR
#define SPI_MASTER_ATTR
#define SPI_MASTER_PERI_CLOCK_ATOMIC
#define SPI_MASTER_PERI_CLOCK_ATOMIC
SPI_TAG
#define SPI_CHECK
spi_device_t
spi_trans_priv_t
spi_host_t
spi_device_t
bus_driver_ctx
is_valid_host(spi_host_device_t)
spi_ipc_param_t
ipc_isr_reg_to_core(void *)
spi_master_init_driver(spi_host_device_t)
spi_master_deinit_driver(void *)
spi_get_timing(bool, int, int, int *, int *)
spi_get_freq_limit(bool, int)
spi_bus_add_device(spi_host_device_t, const spi_device_interface_config_t *, spi_device_handle_t *)
spi_bus_remove_device(spi_device_handle_t)
spi_device_get_actual_freq(spi_device_handle_t, int *)
spi_get_actual_clock(int, int, int)
spi_setup_device(spi_device_t *)
get_acquiring_dev(spi_host_t *)
spi_bus_device_is_polling(spi_device_t *)
spi_bus_intr_enable(void *)
spi_bus_intr_disable(void *)
#define spi_dma_reset
#define spi_dma_start
s_spi_dma_prepare_data(spi_host_t *, spi_hal_context_t *, const spi_hal_dev_config_t *, const spi_hal_trans_config_t *)
s_spi_prepare_data(spi_device_t *, const spi_hal_trans_config_t *)
spi_format_hal_trans_struct(spi_device_t *, spi_trans_priv_t *, spi_hal_trans_config_t *)
spi_new_trans(spi_device_t *, spi_trans_priv_t *)
spi_post_trans(spi_host_t *)
spi_intr(void *)
check_trans_valid(spi_device_handle_t, spi_transaction_t *)
uninstall_priv_desc(spi_trans_priv_t *)
setup_priv_desc(spi_host_t *, spi_trans_priv_t *)
spi_device_queue_trans(spi_device_handle_t, spi_transaction_t *, TickType_t)
spi_device_get_trans_result(spi_device_handle_t, spi_transaction_t **, TickType_t)
spi_device_transmit(spi_device_handle_t, spi_transaction_t *)
spi_device_acquire_bus(spi_device_t *, TickType_t)
spi_device_release_bus(spi_device_t *)
spi_device_polling_start(spi_device_handle_t, spi_transaction_t *, TickType_t)
spi_device_polling_end(spi_device_handle_t, TickType_t)
spi_device_polling_transmit(spi_device_handle_t, spi_transaction_t *)
spi_bus_get_max_transaction_len(spi_host_device_t, size_t *)
--------------Get segment head
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/esp_driver_spi/src/gpspi/spi_master.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 *//* ... */ /* Architecture: We can initialize a SPI driver, but we don't talk to the SPI driver itself, we address a device. A device essentially is a combination of SPI port and CS pin, plus some information about the specifics of communication to the device (timing, command/address length etc). The arbitration between tasks is also in conception of devices. A device can work in interrupt mode and polling mode, and a third but complicated mode which combines the two modes above: 1. Work in the ISR with a set of queues; one per device. The idea is that to send something to a SPI device, you allocate a transaction descriptor. It contains some information about the transfer like the length, address, command etc, plus pointers to transmit and receive buffer. The address of this block gets pushed into the transmit queue. The SPI driver does its magic, and sends and retrieves the data eventually. The data gets written to the receive buffers, if needed the transaction descriptor is modified to indicate returned parameters and the entire thing goes into the return queue, where whatever software initiated the transaction can retrieve it. The entire thing is run from the SPI interrupt handler. If SPI is done transmitting/receiving but nothing is in the queue, it will not clear the SPI interrupt but just disable it by esp_intr_disable. This way, when a new thing is sent, pushing the packet into the send queue and re-enabling the interrupt (by esp_intr_enable) will trigger the interrupt again, which can then take care of the sending. 2. Work in the polling mode in the task. In this mode we get rid of the ISR, FreeRTOS queue and task switching, the task is no longer blocked during a transaction. This increase the cpu load, but decrease the interval of SPI transactions. Each time only one device (in one task) can send polling transactions, transactions to other devices are blocked until the polling transaction of current device is done. In the polling mode, the queue is not used, all the operations are done in the task. The task calls ``spi_device_polling_start`` to setup and start a new transaction, then call ``spi_device_polling_end`` to handle the return value of the transaction. To handle the arbitration among devices, the device "temporarily" acquire a bus by the ``device_acquire_bus_internal`` function, which writes dev_request by CAS operation. Other devices which wants to send polling transactions but don't own the bus will block and wait until given the semaphore which indicates the ownership of bus. In case of the ISR is still sending transactions to other devices, the ISR should maintain an ``random_idle`` flag indicating that it's not doing transactions. When the bus is locked, the ISR can only send new transactions to the acquiring device. The ISR will automatically disable itself and send semaphore to the device if the ISR is free. If the device sees the random_idle flag, it can directly start its polling transaction. Otherwise it should block and wait for the semaphore from the ISR. After the polling transaction, the driver will release the bus. During the release of the bus, the driver search all other devices to see whether there is any device waiting to acquire the bus, if so, acquire for it and send it a semaphore if the device queue is empty, or invoke the ISR for it. If all other devices don't need to acquire the bus, but there are still transactions in the queues, the ISR will also be invoked. To get better polling efficiency, user can call ``spi_device_acquire_bus`` function, which also calls the ``spi_bus_lock_acquire_core`` function, before a series of polling transactions to a device. The bus acquiring and task switching before and after the polling transaction will be escaped. 3. Mixed mode The driver is written under the assumption that polling and interrupt transactions are not happening simultaneously. When sending polling transactions, it will check whether the ISR is active, which includes the case the ISR is sending the interrupt transactions of the acquiring device. If the ISR is still working, the routine sending a polling transaction will get blocked and wait until the semaphore from the ISR which indicates the ISR is free now. A fatal case is, a polling transaction is in flight, but the ISR received an interrupt transaction. The behavior of the driver is unpredictable, which should be strictly forbidden. We have two bits to control the interrupt: 1. The slave->trans_done bit, which is automatically asserted when a transaction is done. This bit is cleared during an interrupt transaction, so that the interrupt will be triggered when the transaction is done, or the SW can check the bit to see if the transaction is done for polling transactions. When no transaction is in-flight, the bit is kept active, so that the SW can easily invoke the ISR by enable the interrupt. 2. The system interrupt enable/disable, controlled by esp_intr_enable and esp_intr_disable. The interrupt is disabled (by the ISR itself) when no interrupt transaction is queued. When the bus is not occupied, any task, which queues a transaction into the queue, will enable the interrupt to invoke the ISR. When the bus is occupied by a device, other device will put off the invoking of ISR to the moment when the bus is released. The device acquiring the bus can still send interrupt transactions by enable the interrupt. *//* ... */ #include <string.h> #include <sys/param.h> #include "esp_private/periph_ctrl.h" #include "esp_private/spi_common_internal.h" #include "esp_private/spi_master_internal.h" #include "driver/spi_master.h" #include "esp_clk_tree.h" #include "clk_ctrl_os.h" #include "esp_log.h" #include "esp_check.h" #include "esp_ipc.h" #include "freertos/task.h" #include "freertos/queue.h" #include "soc/soc_memory_layout.h" #include "driver/gpio.h" #include "hal/spi_hal.h" #include "hal/spi_ll.h" #include "hal/hal_utils.h" #include "esp_heap_caps.h"19 includes #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE #include "esp_cache.h" #endif #ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM #define SPI_MASTER_ISR_ATTR IRAM_ATTR #else #define SPI_MASTER_ISR_ATTR #endif #ifdef CONFIG_SPI_MASTER_IN_IRAM #define SPI_MASTER_ATTR IRAM_ATTR #else #define SPI_MASTER_ATTR #endif #if SOC_PERIPH_CLK_CTRL_SHARED #define SPI_MASTER_PERI_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC() #else #define SPI_MASTER_PERI_CLOCK_ATOMIC() #endif static const char *SPI_TAG = "spi_master"; #define SPI_CHECK(a, str, ret_val, ...) ESP_RETURN_ON_FALSE_ISR(a, ret_val, SPI_TAG, str, ##__VA_ARGS__) typedef struct spi_device_t spi_device_t; /// struct to hold private transaction data (like tx and rx buffer for DMA). typedef struct { spi_transaction_t *trans; const uint32_t *buffer_to_send; //equals to tx_data, if SPI_TRANS_USE_RXDATA is applied; otherwise if original buffer wasn't in DMA-capable memory, this gets the address of a temporary buffer that is; //otherwise sets to the original buffer or NULL if no buffer is assigned. uint32_t *buffer_to_rcv; //similar to buffer_to_send #if SOC_SPI_SCT_SUPPORTED uint32_t reserved[2]; //As we create the queue when in init, to use sct mode private descriptor as a queue item (when in sct mode), we need to add a dummy member here to keep the same size with `spi_sct_trans_priv_t`. #endif }{ ... } spi_trans_priv_t; #if SOC_SPI_SCT_SUPPORTED //Type of dma descriptors that used under SPI SCT mode typedef struct { spi_dma_desc_t *tx_seg_head; spi_dma_desc_t *rx_seg_head; spi_multi_transaction_t *sct_trans_desc_head; uint32_t *sct_conf_buffer; uint16_t tx_used_desc_num; uint16_t rx_used_desc_num; }{...} spi_sct_trans_priv_t; _Static_assert(sizeof(spi_trans_priv_t) == sizeof(spi_sct_trans_priv_t)); //size of spi_trans_priv_t must be the same as size of spi_sct_trans_priv_t typedef struct { /* Segmented-Configure-Transfer required, configured by driver, don't touch */ uint32_t tx_free_desc_num; uint32_t rx_free_desc_num; spi_dma_desc_t *cur_tx_seg_link; ///< Current TX DMA descriptor used for sct mode. spi_dma_desc_t *cur_rx_seg_link; ///< Current RX DMA descriptor used for sct mode. spi_dma_desc_t *tx_seg_link_tail; ///< Tail of the TX DMA descriptor link spi_dma_desc_t *rx_seg_link_tail; ///< Tail of the RX DMA descriptor link }{...} spi_sct_desc_ctx_t; static void spi_hal_sct_tx_dma_desc_recycle(spi_sct_desc_ctx_t *desc_ctx, uint32_t recycle_num); static void spi_hal_sct_rx_dma_desc_recycle(spi_sct_desc_ctx_t *desc_ctx, uint32_t recycle_num);/* ... */ #endif typedef struct { int id; spi_device_t* device[DEV_NUM_MAX]; intr_handle_t intr; spi_hal_context_t hal; spi_trans_priv_t cur_trans_buf; #if SOC_SPI_SCT_SUPPORTED spi_sct_desc_ctx_t sct_desc_pool; spi_sct_trans_priv_t cur_sct_trans;/* ... */ #endif int cur_cs; //current device doing transaction const spi_bus_attr_t* bus_attr; const spi_dma_ctx_t *dma_ctx; bool sct_mode_enabled; /** * the bus is permanently controlled by a device until `spi_bus_release_bus`` is called. Otherwise * the acquiring of SPI bus will be freed when `spi_device_polling_end` is called. *//* ... */ spi_device_t* device_acquiring_lock; portMUX_TYPE spinlock; //debug information bool polling; //in process of a polling, avoid of queue new transactions into ISR }{ ... } spi_host_t; struct spi_device_t { int id; QueueHandle_t trans_queue; QueueHandle_t ret_queue; spi_device_interface_config_t cfg; spi_hal_dev_config_t hal_dev; spi_host_t *host; spi_bus_lock_dev_handle_t dev_lock; }{ ... }; static spi_host_t* bus_driver_ctx[SOC_SPI_PERIPH_NUM] = {}; static void spi_intr(void *arg); static void spi_bus_intr_enable(void *host); static void spi_bus_intr_disable(void *host); static esp_err_t spi_master_deinit_driver(void* arg); static inline bool is_valid_host(spi_host_device_t host) { //SPI1 can be used as GPSPI only on ESP32 #if CONFIG_IDF_TARGET_ESP32 return host >= SPI1_HOST && host <= SPI3_HOST; #elif (SOC_SPI_PERIPH_NUM == 2) return host == SPI2_HOST; #elif (SOC_SPI_PERIPH_NUM == 3) return host >= SPI2_HOST && host <= SPI3_HOST; #endif }{ ... } #if (SOC_CPU_CORES_NUM > 1) && (!CONFIG_FREERTOS_UNICORE) typedef struct { spi_host_t *spi_host; esp_err_t *err; }{ ... } spi_ipc_param_t; static void ipc_isr_reg_to_core(void *args) { spi_host_t *host = ((spi_ipc_param_t *)args)->spi_host; const spi_bus_attr_t* bus_attr = host->bus_attr; *((spi_ipc_param_t *)args)->err = esp_intr_alloc(spicommon_irqsource_for_host(host->id), bus_attr->bus_cfg.intr_flags | ESP_INTR_FLAG_INTRDISABLED, spi_intr, host, &host->intr); }{ ... } #endif/* ... */ // Should be called before any devices are actually registered or used. // Currently automatically called after `spi_bus_initialize()` and when first device is registered. static esp_err_t spi_master_init_driver(spi_host_device_t host_id) { esp_err_t err = ESP_OK; const spi_bus_attr_t* bus_attr = spi_bus_get_attr(host_id); const spi_dma_ctx_t *dma_ctx = spi_bus_get_dma_ctx(host_id); SPI_CHECK(bus_attr != NULL, "host_id not initialized", ESP_ERR_INVALID_STATE); SPI_CHECK(bus_attr->lock != NULL, "SPI Master cannot attach to bus. (Check CONFIG_SPI_FLASH_SHARE_SPI1_BUS)", ESP_ERR_INVALID_ARG); // spihost contains atomic variables, which should not be put in PSRAM spi_host_t* host = heap_caps_malloc(sizeof(spi_host_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (host == NULL) { err = ESP_ERR_NO_MEM; goto cleanup; }{...} *host = (spi_host_t) { .id = host_id, .cur_cs = DEV_NUM_MAX, .polling = false, .device_acquiring_lock = NULL, .spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED, .bus_attr = bus_attr, .dma_ctx = dma_ctx, }{...}; // interrupts are not allowed on SPI1 bus if (host_id != SPI1_HOST) { #if (SOC_CPU_CORES_NUM > 1) && (!CONFIG_FREERTOS_UNICORE) if (bus_attr->bus_cfg.isr_cpu_id > ESP_INTR_CPU_AFFINITY_AUTO) { SPI_CHECK(bus_attr->bus_cfg.isr_cpu_id <= ESP_INTR_CPU_AFFINITY_1, "invalid core id", ESP_ERR_INVALID_ARG); spi_ipc_param_t ipc_arg = { .spi_host = host, .err = &err, }{...}; esp_ipc_call_blocking(ESP_INTR_CPU_AFFINITY_TO_CORE_ID(bus_attr->bus_cfg.isr_cpu_id), ipc_isr_reg_to_core, (void *) &ipc_arg); }{...} else #endif { err = esp_intr_alloc(spicommon_irqsource_for_host(host_id), bus_attr->bus_cfg.intr_flags | ESP_INTR_FLAG_INTRDISABLED, spi_intr, host, &host->intr); }{...} if (err != ESP_OK) { goto cleanup; }{...} }{...} SPI_MASTER_PERI_CLOCK_ATOMIC() { spi_ll_enable_clock(host_id, true); }{...} spi_hal_init(&host->hal, host_id); spi_hal_config_io_default_level(&host->hal, bus_attr->bus_cfg.data_io_default_level); if (host_id != SPI1_HOST) { //SPI1 attributes are already initialized at start up. spi_bus_lock_handle_t lock = spi_bus_lock_get_by_id(host_id); spi_bus_lock_set_bg_control(lock, spi_bus_intr_enable, spi_bus_intr_disable, host); spi_bus_register_destroy_func(host_id, spi_master_deinit_driver, host); }{...} bus_driver_ctx[host_id] = host; return ESP_OK; cleanup: if (host) { spi_hal_deinit(&host->hal); if (host->intr) { esp_intr_free(host->intr); }{...} }{...} free(host); return err; }{ ... } static esp_err_t spi_master_deinit_driver(void* arg) { spi_host_t *host = (spi_host_t*)arg; SPI_CHECK(host != NULL, "host_id not in use", ESP_ERR_INVALID_STATE); int host_id = host->id; SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG); for (int x = 0; x < DEV_NUM_MAX; x++) { SPI_CHECK(host->device[x] == NULL, "not all CSses freed", ESP_ERR_INVALID_STATE); }{...} spi_hal_deinit(&host->hal); if (host->intr) { esp_intr_free(host->intr); }{...} free(host); bus_driver_ctx[host_id] = NULL; return ESP_OK; }{ ... } void spi_get_timing(bool gpio_is_used, int input_delay_ns, int eff_clk, int* dummy_o, int* cycles_remain_o) { #ifdef CONFIG_IDF_TARGET_ESP32 int timing_dummy; int timing_miso_delay; spi_hal_cal_timing(APB_CLK_FREQ, eff_clk, gpio_is_used, input_delay_ns, &timing_dummy, &timing_miso_delay); if (dummy_o) { *dummy_o = timing_dummy; }{...} if (cycles_remain_o) { *cycles_remain_o = timing_miso_delay; }{...} /* ... */#else //TODO: IDF-6578 ESP_LOGW(SPI_TAG, "This func temporary not supported for current target!");/* ... */ #endif }{ ... } int spi_get_freq_limit(bool gpio_is_used, int input_delay_ns) { #ifdef CONFIG_IDF_TARGET_ESP32 return spi_hal_get_freq_limit(gpio_is_used, input_delay_ns); #else //TODO: IDF-6578 ESP_LOGW(SPI_TAG, "This func temporary not supported for current target!"); return 0;/* ... */ #endif }{ ... } /* Add a device. This allocates a CS line for the device, allocates memory for the device structure and hooks up the CS pin to whatever is specified. *//* ... */ esp_err_t spi_bus_add_device(spi_host_device_t host_id, const spi_device_interface_config_t *dev_config, spi_device_handle_t *handle) { spi_device_t *dev = NULL; esp_err_t err = ESP_OK; SPI_CHECK(is_valid_host(host_id), "invalid host", ESP_ERR_INVALID_ARG); if (bus_driver_ctx[host_id] == NULL) { //lazy initialization the driver, get deinitialized by the bus is freed err = spi_master_init_driver(host_id); if (err != ESP_OK) { return err; }{...} }{...} spi_host_t *host = bus_driver_ctx[host_id]; const spi_bus_attr_t* bus_attr = host->bus_attr; SPI_CHECK(dev_config->spics_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_io_num), "spics pin invalid", ESP_ERR_INVALID_ARG); #if SOC_SPI_SUPPORT_CLK_RC_FAST if (dev_config->clock_source == SPI_CLK_SRC_RC_FAST) { SPI_CHECK(periph_rtc_dig_clk8m_enable(), "the selected clock not available", ESP_ERR_INVALID_STATE); }{...} #endif/* ... */ spi_clock_source_t clk_src = SPI_CLK_SRC_DEFAULT; uint32_t clock_source_hz = 0; uint32_t clock_source_div = 1; if (dev_config->clock_source) { clk_src = dev_config->clock_source; }{...} esp_clk_tree_src_get_freq_hz(clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clock_source_hz); #if SPI_LL_SUPPORT_CLK_SRC_PRE_DIV SPI_CHECK((dev_config->clock_speed_hz > 0) && (dev_config->clock_speed_hz <= MIN(clock_source_hz / 2, (80 * 1000000))), "invalid sclk speed", ESP_ERR_INVALID_ARG); if (clock_source_hz / 2 > (80 * 1000000)) { //clock_source_hz beyond peripheral HW limitation, calc pre-divider hal_utils_clk_info_t clk_cfg = { .src_freq_hz = clock_source_hz, .exp_freq_hz = dev_config->clock_speed_hz * 2, //we have (hs_clk = 2*mst_clk), calc hs_clk first .round_opt = HAL_DIV_ROUND, .min_integ = 1, .max_integ = SPI_LL_CLK_SRC_PRE_DIV_MAX / 2, }{...}; hal_utils_calc_clk_div_integer(&clk_cfg, &clock_source_div); }{...} clock_source_div *= 2; //convert to mst_clk function divider clock_source_hz /= clock_source_div; //actual freq enter to SPI peripheral/* ... */ #else SPI_CHECK((dev_config->clock_speed_hz > 0) && (dev_config->clock_speed_hz <= clock_source_hz), "invalid sclk speed", ESP_ERR_INVALID_ARG); #endif #ifdef CONFIG_IDF_TARGET_ESP32 //The hardware looks like it would support this, but actually setting cs_ena_pretrans when transferring in full //duplex mode does absolutely nothing on the ESP32. SPI_CHECK(dev_config->cs_ena_pretrans <= 1 || (dev_config->address_bits == 0 && dev_config->command_bits == 0) || (dev_config->flags & SPI_DEVICE_HALFDUPLEX), "In full-duplex mode, only support cs pretrans delay = 1 and without address_bits and command_bits", ESP_ERR_INVALID_ARG);/* ... */ #endif //Check post_cb status when `SPI_DEVICE_NO_RETURN_RESULT` flag is set. if (dev_config->flags & SPI_DEVICE_NO_RETURN_RESULT) { SPI_CHECK(dev_config->post_cb != NULL, "use feature flag 'SPI_DEVICE_NO_RETURN_RESULT' but no post callback function sets", ESP_ERR_INVALID_ARG); }{...} uint32_t lock_flag = ((dev_config->spics_io_num != -1) ? SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED : 0); spi_bus_lock_dev_config_t lock_config = { .flags = lock_flag, }{...}; spi_bus_lock_dev_handle_t dev_handle; err = spi_bus_lock_register_dev(bus_attr->lock, &lock_config, &dev_handle); if (err != ESP_OK) { goto nomem; }{...} int freecs = spi_bus_lock_get_dev_id(dev_handle); SPI_CHECK(freecs != -1, "no free cs pins for the host", ESP_ERR_NOT_FOUND); //input parameters to calculate timing configuration int half_duplex = dev_config->flags & SPI_DEVICE_HALFDUPLEX ? 1 : 0; int no_compensate = dev_config->flags & SPI_DEVICE_NO_DUMMY ? 1 : 0; int duty_cycle = (dev_config->duty_cycle_pos == 0) ? 128 : dev_config->duty_cycle_pos; int use_gpio = !(bus_attr->flags & SPICOMMON_BUSFLAG_IOMUX_PINS); spi_hal_timing_param_t timing_param = { .half_duplex = half_duplex, .no_compensate = no_compensate, .clk_src_hz = clock_source_hz, .expected_freq = dev_config->clock_speed_hz, .duty_cycle = duty_cycle, .input_delay_ns = dev_config->input_delay_ns, .use_gpio = use_gpio }{...}; //output values of timing configuration spi_hal_timing_conf_t temp_timing_conf; esp_err_t ret = spi_hal_cal_clock_conf(&timing_param, &temp_timing_conf); SPI_CHECK(ret == ESP_OK, "assigned clock speed not supported", ret); temp_timing_conf.clock_source = clk_src; temp_timing_conf.source_pre_div = clock_source_div; temp_timing_conf.rx_sample_point = dev_config->sample_point; if (temp_timing_conf.rx_sample_point == SPI_SAMPLING_POINT_PHASE_1) { SPI_CHECK(spi_ll_master_is_rx_std_sample_supported(), "SPI_SAMPLING_POINT_PHASE_1 is not supported on this chip", ESP_ERR_NOT_SUPPORTED); }{...} //Allocate memory for device dev = malloc(sizeof(spi_device_t)); if (dev == NULL) { goto nomem; }{...} memset(dev, 0, sizeof(spi_device_t)); dev->id = freecs; dev->dev_lock = dev_handle; //Allocate queues, set defaults dev->trans_queue = xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv_t)); if (!dev->trans_queue) { goto nomem; }{...} //ret_queue nolonger needed if use flag SPI_DEVICE_NO_RETURN_RESULT if (!(dev_config->flags & SPI_DEVICE_NO_RETURN_RESULT)) { dev->ret_queue = xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv_t)); if (!dev->ret_queue) { goto nomem; }{...} }{...} //We want to save a copy of the dev config in the dev struct. memcpy(&dev->cfg, dev_config, sizeof(spi_device_interface_config_t)); dev->cfg.duty_cycle_pos = duty_cycle; // TODO: if we have to change the apb clock among transactions, re-calculate this each time the apb clock lock is locked. //Set CS pin, CS options if (dev_config->spics_io_num >= 0) { spicommon_cs_initialize(host_id, dev_config->spics_io_num, freecs, use_gpio); }{...} //save a pointer to device in spi_host_t host->device[freecs] = dev; //save a pointer to host in spi_device_t dev->host = host; //initialise the device specific configuration spi_hal_dev_config_t *hal_dev = &(dev->hal_dev); hal_dev->mode = dev_config->mode; hal_dev->cs_setup = dev_config->cs_ena_pretrans; hal_dev->cs_hold = dev_config->cs_ena_posttrans; //set hold_time to 0 will not actually append delay to CS //set it to 1 since we do need at least one clock of hold time in most cases if (hal_dev->cs_hold == 0) { hal_dev->cs_hold = 1; }{...} hal_dev->cs_pin_id = dev->id; hal_dev->timing_conf = temp_timing_conf; hal_dev->sio = (dev_config->flags) & SPI_DEVICE_3WIRE ? 1 : 0; hal_dev->half_duplex = dev_config->flags & SPI_DEVICE_HALFDUPLEX ? 1 : 0; hal_dev->tx_lsbfirst = dev_config->flags & SPI_DEVICE_TXBIT_LSBFIRST ? 1 : 0; hal_dev->rx_lsbfirst = dev_config->flags & SPI_DEVICE_RXBIT_LSBFIRST ? 1 : 0; hal_dev->no_compensate = dev_config->flags & SPI_DEVICE_NO_DUMMY ? 1 : 0; #if SOC_SPI_AS_CS_SUPPORTED hal_dev->as_cs = dev_config->flags & SPI_DEVICE_CLK_AS_CS ? 1 : 0; #endif hal_dev->positive_cs = dev_config->flags & SPI_DEVICE_POSITIVE_CS ? 1 : 0; *handle = dev; ESP_LOGD(SPI_TAG, "SPI%d: New device added to CS%d, effective clock: %d Hz", host_id + 1, freecs, temp_timing_conf.real_freq); return ESP_OK; nomem: if (dev) { if (dev->trans_queue) { vQueueDelete(dev->trans_queue); }{...} if (dev->ret_queue) { vQueueDelete(dev->ret_queue); }{...} spi_bus_lock_unregister_dev(dev->dev_lock); }{...} free(dev); return ESP_ERR_NO_MEM; }{ ... } esp_err_t spi_bus_remove_device(spi_device_handle_t handle) { SPI_CHECK(handle != NULL, "invalid handle", ESP_ERR_INVALID_ARG); //These checks aren't exhaustive; another thread could sneak in a transaction in between. These are only here to //catch design errors and aren't meant to be triggered during normal operation. SPI_CHECK(uxQueueMessagesWaiting(handle->trans_queue) == 0, "Have unfinished transactions", ESP_ERR_INVALID_STATE); SPI_CHECK(handle->host->cur_cs == DEV_NUM_MAX || handle->host->device[handle->host->cur_cs] != handle, "Have unfinished transactions", ESP_ERR_INVALID_STATE); if (handle->ret_queue) { SPI_CHECK(uxQueueMessagesWaiting(handle->ret_queue) == 0, "Have unfinished transactions", ESP_ERR_INVALID_STATE); }{...} #if SOC_SPI_SUPPORT_CLK_RC_FAST if (handle->cfg.clock_source == SPI_CLK_SRC_RC_FAST) { periph_rtc_dig_clk8m_disable(); }{...} #endif/* ... */ //return int spics_io_num = handle->cfg.spics_io_num; if (spics_io_num >= 0) { spicommon_cs_free_io(spics_io_num); }{...} //Kill queues if (handle->trans_queue) { vQueueDelete(handle->trans_queue); }{...} if (handle->ret_queue) { vQueueDelete(handle->ret_queue); }{...} spi_bus_lock_unregister_dev(handle->dev_lock); assert(handle->host->device[handle->id] == handle); handle->host->device[handle->id] = NULL; free(handle); return ESP_OK; }{ ... } esp_err_t spi_device_get_actual_freq(spi_device_handle_t handle, int* freq_khz) { if ((spi_device_t *)handle == NULL || freq_khz == NULL) { return ESP_ERR_INVALID_ARG; }{...} *freq_khz = handle->hal_dev.timing_conf.real_freq / 1000; return ESP_OK; }{ ... } int spi_get_actual_clock(int fapb, int hz, int duty_cycle) { return spi_hal_master_cal_clock(fapb, hz, duty_cycle); }{ ... } // Setup the device-specified configuration registers. Called every time a new // transaction is to be sent, but only apply new configurations when the device // changes. static SPI_MASTER_ISR_ATTR void spi_setup_device(spi_device_t *dev) { spi_bus_lock_dev_handle_t dev_lock = dev->dev_lock; spi_hal_context_t *hal = &dev->host->hal; spi_hal_dev_config_t *hal_dev = &(dev->hal_dev); if (spi_bus_lock_touch(dev_lock)) { /* Configuration has not been applied yet. */ spi_hal_setup_device(hal, hal_dev); SPI_MASTER_PERI_CLOCK_ATOMIC() { #if SPI_LL_SUPPORT_CLK_SRC_PRE_DIV //we set mst_div as const 2, then (hs_clk = 2*mst_clk) to ensure timing turning work as past //and sure (hs_div * mst_div = source_pre_div) spi_ll_clk_source_pre_div(hal->hw, hal_dev->timing_conf.source_pre_div / 2, 2);/* ... */ #endif spi_ll_set_clk_source(hal->hw, hal_dev->timing_conf.clock_source); }{...} }{...} }{ ... } static SPI_MASTER_ISR_ATTR spi_device_t *get_acquiring_dev(spi_host_t *host) { spi_bus_lock_dev_handle_t dev_lock = spi_bus_lock_get_acquiring_dev(host->bus_attr->lock); if (!dev_lock) { return NULL; }{...} return host->device[spi_bus_lock_get_dev_id(dev_lock)]; }{ ... } // Debug only // NOTE if the acquiring is not fully completed, `spi_bus_lock_get_acquiring_dev` // may return a false `NULL` cause the function returning false `false`. static inline SPI_MASTER_ISR_ATTR bool spi_bus_device_is_polling(spi_device_t *dev) { return get_acquiring_dev(dev->host) == dev && dev->host->polling; }{ ... } /*----------------------------------------------------------------------------- Working Functions -----------------------------------------------------------------------------*//* ... */ // The interrupt may get invoked by the bus lock. static void SPI_MASTER_ISR_ATTR spi_bus_intr_enable(void *host) { esp_intr_enable(((spi_host_t*)host)->intr); }{ ... } // The interrupt is always disabled by the ISR itself, not exposed static void SPI_MASTER_ISR_ATTR spi_bus_intr_disable(void *host) { esp_intr_disable(((spi_host_t*)host)->intr); }{ ... } #if SOC_GDMA_SUPPORTED // AHB_DMA_V1 and AXI_DMA // dma is provided by gdma driver on these targets #define spi_dma_reset gdma_reset #define spi_dma_start(chan, addr) gdma_start(chan, (intptr_t)(addr))/* ... */ #endif static void SPI_MASTER_ISR_ATTR s_spi_dma_prepare_data(spi_host_t *host, spi_hal_context_t *hal, const spi_hal_dev_config_t *dev, const spi_hal_trans_config_t *trans) { const spi_dma_ctx_t *dma_ctx = host->dma_ctx; if (trans->rcv_buffer) { spicommon_dma_desc_setup_link(dma_ctx->dmadesc_rx, trans->rcv_buffer, ((trans->rx_bitlen + 7) / 8), true); spi_dma_reset(dma_ctx->rx_dma_chan); spi_hal_hw_prepare_rx(hal->hw); spi_dma_start(dma_ctx->rx_dma_chan, dma_ctx->dmadesc_rx); }{...} #if CONFIG_IDF_TARGET_ESP32 else if (!dev->half_duplex) { //DMA temporary workaround: let RX DMA work somehow to avoid the issue in ESP32 v0/v1 silicon spi_ll_dma_rx_enable(hal->hw, 1); spi_dma_start(dma_ctx->rx_dma_chan, NULL); }{...} #endif/* ... */ if (trans->send_buffer) { spicommon_dma_desc_setup_link(dma_ctx->dmadesc_tx, trans->send_buffer, (trans->tx_bitlen + 7) / 8, false); spi_dma_reset(dma_ctx->tx_dma_chan); spi_hal_hw_prepare_tx(hal->hw); spi_dma_start(dma_ctx->tx_dma_chan, dma_ctx->dmadesc_tx); }{...} }{ ... } static void SPI_MASTER_ISR_ATTR s_spi_prepare_data(spi_device_t *dev, const spi_hal_trans_config_t *hal_trans) { spi_host_t *host = dev->host; spi_hal_dev_config_t *hal_dev = &(dev->hal_dev); spi_hal_context_t *hal = &(host->hal); if (host->bus_attr->dma_enabled) { s_spi_dma_prepare_data(host, hal, hal_dev, hal_trans); }{...} else { //Need to copy data to registers manually spi_hal_push_tx_buffer(hal, hal_trans); }{...} //in ESP32 these registers should be configured after the DMA is set spi_hal_enable_data_line(hal->hw, (!hal_dev->half_duplex && hal_trans->rcv_buffer) || hal_trans->send_buffer, !!hal_trans->rcv_buffer); }{ ... } static void SPI_MASTER_ISR_ATTR spi_format_hal_trans_struct(spi_device_t *dev, spi_trans_priv_t *trans_buf, spi_hal_trans_config_t *hal_trans) { spi_host_t *host = dev->host; spi_transaction_t *trans = trans_buf->trans; hal_trans->tx_bitlen = trans->length; hal_trans->rx_bitlen = trans->rxlength; hal_trans->rcv_buffer = (uint8_t*)host->cur_trans_buf.buffer_to_rcv; hal_trans->send_buffer = (uint8_t*)host->cur_trans_buf.buffer_to_send; hal_trans->cmd = trans->cmd; hal_trans->addr = trans->addr; if (trans->flags & SPI_TRANS_VARIABLE_CMD) { hal_trans->cmd_bits = ((spi_transaction_ext_t *)trans)->command_bits; }{...} else { hal_trans->cmd_bits = dev->cfg.command_bits; }{...} if (trans->flags & SPI_TRANS_VARIABLE_ADDR) { hal_trans->addr_bits = ((spi_transaction_ext_t *)trans)->address_bits; }{...} else { hal_trans->addr_bits = dev->cfg.address_bits; }{...} if (trans->flags & SPI_TRANS_VARIABLE_DUMMY) { hal_trans->dummy_bits = ((spi_transaction_ext_t *)trans)->dummy_bits; }{...} else { hal_trans->dummy_bits = dev->cfg.dummy_bits; }{...} hal_trans->cs_keep_active = (trans->flags & SPI_TRANS_CS_KEEP_ACTIVE) ? 1 : 0; //Set up OIO/QIO/DIO if needed hal_trans->line_mode.data_lines = (trans->flags & SPI_TRANS_MODE_DIO) ? 2 : (trans->flags & SPI_TRANS_MODE_QIO) ? 4 : 1; #if SOC_SPI_SUPPORT_OCT if (trans->flags & SPI_TRANS_MODE_OCT) { hal_trans->line_mode.data_lines = 8; }{...} #endif/* ... */ hal_trans->line_mode.addr_lines = (trans->flags & SPI_TRANS_MULTILINE_ADDR) ? hal_trans->line_mode.data_lines : 1; hal_trans->line_mode.cmd_lines = (trans->flags & SPI_TRANS_MULTILINE_CMD) ? hal_trans->line_mode.data_lines : 1; }{ ... } // The function is called to send a new transaction, in ISR or in the task. // Setup the transaction-specified registers and linked-list used by the DMA (or FIFO if DMA is not used) static void SPI_MASTER_ISR_ATTR spi_new_trans(spi_device_t *dev, spi_trans_priv_t *trans_buf) { spi_transaction_t *trans = trans_buf->trans; spi_hal_context_t *hal = &(dev->host->hal); spi_hal_dev_config_t *hal_dev = &(dev->hal_dev); dev->host->cur_cs = dev->id; //Reconfigure according to device settings, the function only has effect when the dev_id is changed. spi_setup_device(dev); //set the transaction specific configuration each time before a transaction setup spi_hal_trans_config_t hal_trans = {}; spi_format_hal_trans_struct(dev, trans_buf, &hal_trans); spi_hal_setup_trans(hal, hal_dev, &hal_trans); s_spi_prepare_data(dev, &hal_trans); //Call pre-transmission callback, if any if (dev->cfg.pre_cb) { dev->cfg.pre_cb(trans); }{...} //Kick off transfer spi_hal_user_start(hal); }{ ... } // The function is called when a transaction is done, in ISR or in the task. // Fetch the data from FIFO and call the ``post_cb``. static void SPI_MASTER_ISR_ATTR spi_post_trans(spi_host_t *host) { spi_transaction_t *cur_trans = host->cur_trans_buf.trans; if (!host->bus_attr->dma_enabled) { spi_hal_fetch_result(&host->hal); }{...} //Call post-transaction callback, if any spi_device_t* dev = host->device[host->cur_cs]; if (dev->cfg.post_cb) { dev->cfg.post_cb(cur_trans); }{...} host->cur_cs = DEV_NUM_MAX; }{ ... } #if SOC_SPI_SCT_SUPPORTED static void SPI_MASTER_ISR_ATTR spi_sct_set_hal_trans_config(spi_multi_transaction_t *trans_header, spi_hal_trans_config_t *hal_trans) { spi_transaction_t *trans = &trans_header->base; //Set up OIO/QIO/DIO if needed hal_trans->line_mode.data_lines = (trans->flags & SPI_TRANS_MODE_DIO) ? 2 : (trans->flags & SPI_TRANS_MODE_QIO) ? 4 : 1; #if SOC_SPI_SUPPORT_OCT if (trans->flags & SPI_TRANS_MODE_OCT) { hal_trans->line_mode.data_lines = 8; }{...} /* ... */#endif hal_trans->line_mode.addr_lines = (trans->flags & SPI_TRANS_MULTILINE_ADDR) ? hal_trans->line_mode.data_lines : 1; hal_trans->line_mode.cmd_lines = (trans->flags & SPI_TRANS_MULTILINE_CMD) ? hal_trans->line_mode.data_lines : 1; }{...} static void SPI_MASTER_ISR_ATTR s_sct_load_dma_link(spi_device_t *dev, spi_dma_desc_t *rx_seg_head, spi_dma_desc_t *tx_seg_head) { spi_hal_context_t *hal = &dev->host->hal; const spi_dma_ctx_t *dma_ctx = dev->host->dma_ctx; spi_hal_clear_intr_mask(hal, SPI_LL_INTR_SEG_DONE); if (rx_seg_head) { spi_dma_reset(dma_ctx->rx_dma_chan); spi_hal_hw_prepare_rx(hal->hw); spi_dma_start(dma_ctx->rx_dma_chan, rx_seg_head); }{...} if (tx_seg_head) { spi_dma_reset(dma_ctx->tx_dma_chan); spi_hal_hw_prepare_tx(hal->hw); spi_dma_start(dma_ctx->tx_dma_chan, tx_seg_head); }{...} }{...} static void SPI_MASTER_ISR_ATTR spi_new_sct_trans(spi_device_t *dev, spi_sct_trans_priv_t *cur_sct_trans) { dev->host->cur_cs = dev->id; //Reconfigure according to device settings, the function only has effect when the dev_id is changed. spi_setup_device(dev); #if !CONFIG_IDF_TARGET_ESP32S2 // s2 update this seg_gap_clock_len by dma from conf_buffer spi_hal_sct_set_conf_bits_len(&dev->host->hal, cur_sct_trans->sct_trans_desc_head->sct_gap_len);/* ... */ #endif s_sct_load_dma_link(dev, cur_sct_trans->rx_seg_head, cur_sct_trans->tx_seg_head); if (dev->cfg.pre_cb) { dev->cfg.pre_cb((spi_transaction_t *)cur_sct_trans->sct_trans_desc_head); }{...} //Kick off transfer spi_hal_user_start(&dev->host->hal); }{...} static void SPI_MASTER_ISR_ATTR spi_post_sct_trans(spi_host_t *host) { if (host->cur_sct_trans.rx_seg_head == NULL) { assert(host->cur_sct_trans.rx_used_desc_num == 0); }{...} free(host->cur_sct_trans.sct_conf_buffer); portENTER_CRITICAL_ISR(&host->spinlock); spi_hal_sct_tx_dma_desc_recycle(&host->sct_desc_pool, host->cur_sct_trans.tx_used_desc_num); spi_hal_sct_rx_dma_desc_recycle(&host->sct_desc_pool, host->cur_sct_trans.rx_used_desc_num); portEXIT_CRITICAL_ISR(&host->spinlock); if (host->device[host->cur_cs]->cfg.post_cb) { host->device[host->cur_cs]->cfg.post_cb((spi_transaction_t *)host->cur_sct_trans.sct_trans_desc_head); }{...} host->cur_cs = DEV_NUM_MAX; }{...} /* ... */#endif //#if SOC_SPI_SCT_SUPPORTED // This is run in interrupt context. static void SPI_MASTER_ISR_ATTR spi_intr(void *arg) { BaseType_t do_yield = pdFALSE; spi_host_t *host = (spi_host_t *)arg; const spi_bus_attr_t* bus_attr = host->bus_attr; #if CONFIG_IDF_TARGET_ESP32 //only for esp32 dma workaround usage const spi_dma_ctx_t *dma_ctx = host->dma_ctx;/* ... */ #endif #if SOC_SPI_SCT_SUPPORTED assert(spi_hal_usr_is_done(&host->hal) || spi_hal_get_intr_mask(&host->hal, SPI_LL_INTR_SEG_DONE)); #else assert(spi_hal_usr_is_done(&host->hal)); #endif /* * Help to skip the handling of in-flight transaction, and disable of the interrupt. * The esp_intr_enable will be called (b) after new BG request is queued (a) in the task; * while esp_intr_disable should be called (c) if we check and found the sending queue is empty (d). * If (c) is called after (d), then there is a risk that things happens in this sequence: * (d) -> (a) -> (b) -> (c), and in this case the interrupt is disabled while there's pending BG request in the queue. * To avoid this, interrupt is disabled here, and re-enabled later if required. *//* ... */ if (!spi_bus_lock_bg_entry(bus_attr->lock)) { /*------------ deal with the in-flight transaction -----------------*/ assert(host->cur_cs != DEV_NUM_MAX); //Okay, transaction is done. const int cs = host->cur_cs; //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset. if (bus_attr->dma_enabled) { #if CONFIG_IDF_TARGET_ESP32 //This workaround is only for esp32, where tx_dma_chan and rx_dma_chan are always same spicommon_dmaworkaround_idle(dma_ctx->tx_dma_chan.chan_id);/* ... */ #endif //#if CONFIG_IDF_TARGET_ESP32 #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE //invalidate here to let user access rx data in post_cb if possible if (host->cur_trans_buf.buffer_to_rcv) { uint16_t alignment = bus_attr->internal_mem_align_size; uint32_t buffer_byte_len = (host->cur_trans_buf.trans->rxlength + 7) / 8; buffer_byte_len = (buffer_byte_len + alignment - 1) & (~(alignment - 1)); // invalidate priv_trans.buffer_to_rcv anyway, only user provide aligned buffer can rcv correct data in post_cb esp_err_t ret = esp_cache_msync((void *)host->cur_trans_buf.buffer_to_rcv, buffer_byte_len, ESP_CACHE_MSYNC_FLAG_DIR_M2C); assert(ret == ESP_OK); }{...} #endif/* ... */ }{...} #if SOC_SPI_SCT_SUPPORTED if (host->sct_mode_enabled) { //cur_cs is changed to DEV_NUM_MAX here spi_post_sct_trans(host); if (!(host->device[cs]->cfg.flags & SPI_DEVICE_NO_RETURN_RESULT)) { xQueueSendFromISR(host->device[cs]->ret_queue, &host->cur_sct_trans, &do_yield); }{...} }{...} else #endif //#if SOC_SPI_SCT_SUPPORTED { //cur_cs is changed to DEV_NUM_MAX here spi_post_trans(host); if (!(host->device[cs]->cfg.flags & SPI_DEVICE_NO_RETURN_RESULT)) { //Return transaction descriptor. xQueueSendFromISR(host->device[cs]->ret_queue, &host->cur_trans_buf, &do_yield); }{...} }{...} #ifdef CONFIG_PM_ENABLE //Release APB frequency lock esp_pm_lock_release(bus_attr->pm_lock);/* ... */ #endif }{...} /*------------ new transaction starts here ------------------*/ assert(host->cur_cs == DEV_NUM_MAX); spi_bus_lock_handle_t lock = host->bus_attr->lock; BaseType_t trans_found = pdFALSE; // There should be remaining requests BUS_LOCK_DEBUG_EXECUTE_CHECK(spi_bus_lock_bg_req_exist(lock)); do { spi_bus_lock_dev_handle_t acq_dev_lock = spi_bus_lock_get_acquiring_dev(lock); spi_bus_lock_dev_handle_t desired_dev = acq_dev_lock; bool resume_task = false; spi_device_t* device_to_send = NULL; if (!acq_dev_lock) { // This function may assign a new acquiring device, otherwise it will suggest a desired device with BG active // We use either of them without further searching in the devices. // If the return value is true, it means either there's no acquiring device, or the acquiring device's BG is active, // We stay in the ISR to deal with those transactions of desired device, otherwise nothing will be done, check whether we need to resume some other tasks, or just quit the ISR resume_task = spi_bus_lock_bg_check_dev_acq(lock, &desired_dev); }{...} if (!resume_task) { // sanity check assert(desired_dev); bool dev_has_req = spi_bus_lock_bg_check_dev_req(desired_dev); if (dev_has_req) { device_to_send = host->device[spi_bus_lock_get_dev_id(desired_dev)]; #if SOC_SPI_SCT_SUPPORTED if (host->sct_mode_enabled) { trans_found = xQueueReceiveFromISR(device_to_send->trans_queue, &host->cur_sct_trans, &do_yield); }{...} else #endif //#if SOC_SPI_SCT_SUPPORTED { trans_found = xQueueReceiveFromISR(device_to_send->trans_queue, &host->cur_trans_buf, &do_yield); }{...} if (!trans_found) { spi_bus_lock_bg_clear_req(desired_dev); }{...} }{...} }{...} if (trans_found) { #if SOC_SPI_SCT_SUPPORTED if (host->sct_mode_enabled) { spi_new_sct_trans(device_to_send, &host->cur_sct_trans); }{...} else #endif //#if SOC_SPI_SCT_SUPPORTED { spi_trans_priv_t *const cur_trans_buf = &host->cur_trans_buf; #if CONFIG_IDF_TARGET_ESP32 if (bus_attr->dma_enabled && (cur_trans_buf->buffer_to_rcv || cur_trans_buf->buffer_to_send)) { //mark channel as active, so that the DMA will not be reset by the slave //This workaround is only for esp32, where tx_dma_chan and rx_dma_chan are always same spicommon_dmaworkaround_transfer_active(dma_ctx->tx_dma_chan.chan_id); }{...} #endif/* ... */ //#if CONFIG_IDF_TARGET_ESP32 spi_new_trans(device_to_send, cur_trans_buf); }{...} }{...} // Exit of the ISR, handle interrupt re-enable (if sending transaction), retry (if there's coming BG), // or resume acquiring device task (if quit due to bus acquiring). }{...} while (!spi_bus_lock_bg_exit(lock, trans_found, &do_yield)); if (do_yield) { portYIELD_FROM_ISR(); }{...} }{ ... } static SPI_MASTER_ISR_ATTR esp_err_t check_trans_valid(spi_device_handle_t handle, spi_transaction_t *trans_desc) { SPI_CHECK(handle != NULL, "invalid dev handle", ESP_ERR_INVALID_ARG); spi_host_t *host = handle->host; const spi_bus_attr_t* bus_attr = host->bus_attr; bool tx_enabled = (trans_desc->flags & SPI_TRANS_USE_TXDATA) || (trans_desc->tx_buffer); bool rx_enabled = (trans_desc->flags & SPI_TRANS_USE_RXDATA) || (trans_desc->rx_buffer); spi_transaction_ext_t *t_ext = (spi_transaction_ext_t *)trans_desc; bool dummy_enabled = (((trans_desc->flags & SPI_TRANS_VARIABLE_DUMMY) ? t_ext->dummy_bits : handle->cfg.dummy_bits) != 0); bool extra_dummy_enabled = handle->hal_dev.timing_conf.timing_dummy; bool is_half_duplex = ((handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) != 0); //check transmission length SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_RXDATA) == 0 || trans_desc->rxlength <= 32, "SPI_TRANS_USE_RXDATA only available for rxdata transfer <= 32 bits", ESP_ERR_INVALID_ARG); SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_TXDATA) == 0 || trans_desc->length <= 32, "SPI_TRANS_USE_TXDATA only available for txdata transfer <= 32 bits", ESP_ERR_INVALID_ARG); SPI_CHECK(trans_desc->length <= bus_attr->max_transfer_sz * 8, "txdata transfer > host maximum", ESP_ERR_INVALID_ARG); SPI_CHECK(trans_desc->rxlength <= bus_attr->max_transfer_sz * 8, "rxdata transfer > host maximum", ESP_ERR_INVALID_ARG); SPI_CHECK(is_half_duplex || trans_desc->rxlength <= trans_desc->length, "rx length > tx length in full duplex mode", ESP_ERR_INVALID_ARG); //check working mode #if SOC_SPI_SUPPORT_OCT SPI_CHECK(!(host->id == SPI3_HOST && trans_desc->flags & SPI_TRANS_MODE_OCT), "SPI3 does not support octal mode", ESP_ERR_INVALID_ARG); SPI_CHECK(!((trans_desc->flags & SPI_TRANS_MODE_OCT) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "Incompatible when setting to both Octal mode and 3-wire-mode", ESP_ERR_INVALID_ARG); SPI_CHECK(!((trans_desc->flags & SPI_TRANS_MODE_OCT) && !is_half_duplex), "Incompatible when setting to both Octal mode and half duplex mode", ESP_ERR_INVALID_ARG);/* ... */ #endif SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO | SPI_TRANS_MODE_QIO)) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "Incompatible when setting to both multi-line mode and 3-wire-mode", ESP_ERR_INVALID_ARG); SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO | SPI_TRANS_MODE_QIO)) && !is_half_duplex), "Incompatible when setting to both multi-line mode and half duplex mode", ESP_ERR_INVALID_ARG); #ifdef CONFIG_IDF_TARGET_ESP32 SPI_CHECK(!is_half_duplex || !bus_attr->dma_enabled || !rx_enabled || !tx_enabled, "SPI half duplex mode does not support using DMA with both MOSI and MISO phases.", ESP_ERR_INVALID_ARG); #endif #if !SOC_SPI_HD_BOTH_INOUT_SUPPORTED //On these chips, HW doesn't support using both TX and RX phases when in halfduplex mode SPI_CHECK(!is_half_duplex || !tx_enabled || !rx_enabled, "SPI half duplex mode is not supported when both MOSI and MISO phases are enabled.", ESP_ERR_INVALID_ARG); SPI_CHECK(!is_half_duplex || !trans_desc->length || !trans_desc->rxlength, "SPI half duplex mode is not supported when both MOSI and MISO phases are enabled.", ESP_ERR_INVALID_ARG);/* ... */ #endif //MOSI phase is skipped only when both tx_buffer and SPI_TRANS_USE_TXDATA are not set. SPI_CHECK(trans_desc->length != 0 || !tx_enabled, "trans tx_buffer should be NULL and SPI_TRANS_USE_TXDATA should be cleared to skip MOSI phase.", ESP_ERR_INVALID_ARG); //MISO phase is skipped only when both rx_buffer and SPI_TRANS_USE_RXDATA are not set. //If set rxlength=0 in full_duplex mode, it will be automatically set to length SPI_CHECK(!is_half_duplex || trans_desc->rxlength != 0 || !rx_enabled, "trans rx_buffer should be NULL and SPI_TRANS_USE_RXDATA should be cleared to skip MISO phase.", ESP_ERR_INVALID_ARG); //In Full duplex mode, default rxlength to be the same as length, if not filled in. // set rxlength to length is ok, even when rx buffer=NULL if (trans_desc->rxlength == 0 && !is_half_duplex) { trans_desc->rxlength = trans_desc->length; }{...} //Dummy phase is not available when both data out and in are enabled, regardless of FD or HD mode. SPI_CHECK(!tx_enabled || !rx_enabled || !dummy_enabled || !extra_dummy_enabled, "Dummy phase is not available when both data out and in are enabled", ESP_ERR_INVALID_ARG); if (bus_attr->dma_enabled) { SPI_CHECK(trans_desc->length <= SPI_LL_DMA_MAX_BIT_LEN, "txdata transfer > hardware max supported len", ESP_ERR_INVALID_ARG); SPI_CHECK(trans_desc->rxlength <= SPI_LL_DMA_MAX_BIT_LEN, "rxdata transfer > hardware max supported len", ESP_ERR_INVALID_ARG); }{...} else { SPI_CHECK(trans_desc->length <= SPI_LL_CPU_MAX_BIT_LEN, "txdata transfer > hardware max supported len", ESP_ERR_INVALID_ARG); SPI_CHECK(trans_desc->rxlength <= SPI_LL_CPU_MAX_BIT_LEN, "rxdata transfer > hardware max supported len", ESP_ERR_INVALID_ARG); }{...} return ESP_OK; }{ ... } static SPI_MASTER_ISR_ATTR void uninstall_priv_desc(spi_trans_priv_t* trans_buf) { spi_transaction_t *trans_desc = trans_buf->trans; if ((void *)trans_buf->buffer_to_send != &trans_desc->tx_data[0] && trans_buf->buffer_to_send != trans_desc->tx_buffer) { free((void *)trans_buf->buffer_to_send); //force free, ignore const }{...} // copy data from temporary DMA-capable buffer back to IRAM buffer and free the temporary one. if (trans_buf->buffer_to_rcv && (void *)trans_buf->buffer_to_rcv != &trans_desc->rx_data[0] && trans_buf->buffer_to_rcv != trans_desc->rx_buffer) { // NOLINT(clang-analyzer-unix.Malloc) if (trans_desc->flags & SPI_TRANS_USE_RXDATA) { memcpy((uint8_t *) & trans_desc->rx_data[0], trans_buf->buffer_to_rcv, (trans_desc->rxlength + 7) / 8); }{...} else { memcpy(trans_desc->rx_buffer, trans_buf->buffer_to_rcv, (trans_desc->rxlength + 7) / 8); }{...} free(trans_buf->buffer_to_rcv); }{...} }{ ... } static SPI_MASTER_ISR_ATTR esp_err_t setup_priv_desc(spi_host_t *host, spi_trans_priv_t* priv_desc) { spi_transaction_t *trans_desc = priv_desc->trans; const spi_bus_attr_t *bus_attr = host->bus_attr; uint16_t alignment = bus_attr->internal_mem_align_size; // rx memory assign uint32_t* rcv_ptr; if (trans_desc->flags & SPI_TRANS_USE_RXDATA) { rcv_ptr = (uint32_t *)&trans_desc->rx_data[0]; }{...} else { //if not use RXDATA neither rx_buffer, buffer_to_rcv assigned to NULL rcv_ptr = trans_desc->rx_buffer; }{...} // tx memory assign const uint32_t *send_ptr; if (trans_desc->flags & SPI_TRANS_USE_TXDATA) { send_ptr = (uint32_t *)&trans_desc->tx_data[0]; }{...} else { //if not use TXDATA neither tx_buffer, tx data assigned to NULL send_ptr = trans_desc->tx_buffer ; }{...} uint32_t tx_byte_len = (trans_desc->length + 7) / 8; uint32_t rx_byte_len = (trans_desc->rxlength + 7) / 8; #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE bool tx_unaligned = ((((uint32_t)send_ptr) | tx_byte_len) & (alignment - 1)); bool rx_unaligned = ((((uint32_t)rcv_ptr) | rx_byte_len) & (alignment - 1));/* ... */ #else bool tx_unaligned = false; //tx don't need align on addr or length, for other chips bool rx_unaligned = (((uint32_t)rcv_ptr) & (alignment - 1));/* ... */ #endif if (send_ptr && bus_attr->dma_enabled) { if ((!esp_ptr_dma_capable(send_ptr) || tx_unaligned)) { ESP_RETURN_ON_FALSE(!(trans_desc->flags & SPI_TRANS_DMA_BUFFER_ALIGN_MANUAL), ESP_ERR_INVALID_ARG, SPI_TAG, "Set flag SPI_TRANS_DMA_BUFFER_ALIGN_MANUAL but TX buffer addr&len not align to %d byte, or not dma_capable", alignment); //if txbuf in the desc not DMA-capable, or not bytes aligned to alignment, malloc a new one ESP_EARLY_LOGD(SPI_TAG, "Allocate TX buffer for DMA"); tx_byte_len = (tx_byte_len + alignment - 1) & (~(alignment - 1)); // up align alignment uint32_t *temp = heap_caps_aligned_alloc(alignment, tx_byte_len, MALLOC_CAP_DMA); if (temp == NULL) { goto clean_up; }{...} memcpy(temp, send_ptr, (trans_desc->length + 7) / 8); send_ptr = temp; }{...} #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE esp_err_t ret = esp_cache_msync((void *)send_ptr, tx_byte_len, ESP_CACHE_MSYNC_FLAG_DIR_C2M); assert(ret == ESP_OK);/* ... */ #endif }{...} if (rcv_ptr && bus_attr->dma_enabled) { if ((!esp_ptr_dma_capable(rcv_ptr) || rx_unaligned)) { ESP_RETURN_ON_FALSE(!(trans_desc->flags & SPI_TRANS_DMA_BUFFER_ALIGN_MANUAL), ESP_ERR_INVALID_ARG, SPI_TAG, "Set flag SPI_TRANS_DMA_BUFFER_ALIGN_MANUAL but RX buffer addr&len not align to %d byte, or not dma_capable", alignment); //if rxbuf in the desc not DMA-capable, or not aligned to alignment, malloc a new one ESP_EARLY_LOGD(SPI_TAG, "Allocate RX buffer for DMA"); rx_byte_len = (rx_byte_len + alignment - 1) & (~(alignment - 1)); // up align alignment rcv_ptr = heap_caps_aligned_alloc(alignment, rx_byte_len, MALLOC_CAP_DMA); if (rcv_ptr == NULL) { goto clean_up; }{...} }{...} #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE // do invalid here to hold on cache status to avoid hardware auto write back during dma transaction esp_err_t ret = esp_cache_msync((void *)rcv_ptr, rx_byte_len, ESP_CACHE_MSYNC_FLAG_DIR_M2C); assert(ret == ESP_OK);/* ... */ #endif }{...} priv_desc->buffer_to_send = send_ptr; priv_desc->buffer_to_rcv = rcv_ptr; return ESP_OK; clean_up: uninstall_priv_desc(priv_desc); return ESP_ERR_NO_MEM; }{ ... } esp_err_t SPI_MASTER_ATTR spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *trans_desc, TickType_t ticks_to_wait) { esp_err_t ret = check_trans_valid(handle, trans_desc); if (ret != ESP_OK) { return ret; }{...} spi_host_t *host = handle->host; SPI_CHECK(!spi_bus_device_is_polling(handle), "Cannot queue new transaction while previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE); /* Even when using interrupt transfer, the CS can only be kept activated if the bus has been * acquired with `spi_device_acquire_bus()` first. *//* ... */ if (host->device_acquiring_lock != handle && (trans_desc->flags & SPI_TRANS_CS_KEEP_ACTIVE)) { return ESP_ERR_INVALID_ARG; }{...} spi_trans_priv_t trans_buf = { .trans = trans_desc, }; ret = setup_priv_desc(host, &trans_buf); if (ret != ESP_OK) { return ret; }{...} #ifdef CONFIG_PM_ENABLE // though clock source is selectable, read/write reg and mem of spi peripheral still use APB // and dma still use APB, so pm_lock is still needed esp_pm_lock_acquire(host->bus_attr->pm_lock);/* ... */ #endif //Send to queue and invoke the ISR. BaseType_t r = xQueueSend(handle->trans_queue, (void *)&trans_buf, ticks_to_wait); if (!r) { ret = ESP_ERR_TIMEOUT; #ifdef CONFIG_PM_ENABLE //Release APB frequency lock esp_pm_lock_release(host->bus_attr->pm_lock);/* ... */ #endif goto clean_up; }{...} // The ISR will be invoked at correct time by the lock with `spi_bus_intr_enable`. ret = spi_bus_lock_bg_request(handle->dev_lock); if (ret != ESP_OK) { goto clean_up; }{...} return ESP_OK; clean_up: uninstall_priv_desc(&trans_buf); return ret; }{ ... } esp_err_t SPI_MASTER_ATTR spi_device_get_trans_result(spi_device_handle_t handle, spi_transaction_t **trans_desc, TickType_t ticks_to_wait) { BaseType_t r; spi_trans_priv_t trans_buf; SPI_CHECK(handle != NULL, "invalid dev handle", ESP_ERR_INVALID_ARG); bool use_dma = handle->host->bus_attr->dma_enabled; //if SPI_DEVICE_NO_RETURN_RESULT is set, ret_queue will always be empty SPI_CHECK(!(handle->cfg.flags & SPI_DEVICE_NO_RETURN_RESULT), "API not Supported!", ESP_ERR_NOT_SUPPORTED); //use the interrupt, block until return r = xQueueReceive(handle->ret_queue, (void*)&trans_buf, ticks_to_wait); if (!r) { // The memory occupied by rx and tx DMA buffer destroyed only when receiving from the queue (transaction finished). // If timeout, wait and retry. // Every in-flight transaction request occupies internal memory as DMA buffer if needed. return ESP_ERR_TIMEOUT; }{...} //release temporary buffers used by dma if (use_dma) { uninstall_priv_desc(&trans_buf); }{...} (*trans_desc) = trans_buf.trans; return ESP_OK; }{ ... } //Porcelain to do one blocking transmission. esp_err_t SPI_MASTER_ATTR spi_device_transmit(spi_device_handle_t handle, spi_transaction_t *trans_desc) { esp_err_t ret; spi_transaction_t *ret_trans; //ToDo: check if any spi transfers in flight ret = spi_device_queue_trans(handle, trans_desc, portMAX_DELAY); if (ret != ESP_OK) { return ret; }{...} ret = spi_device_get_trans_result(handle, &ret_trans, portMAX_DELAY); if (ret != ESP_OK) { return ret; }{...} assert(ret_trans == trans_desc); return ESP_OK; }{ ... } esp_err_t SPI_MASTER_ISR_ATTR spi_device_acquire_bus(spi_device_t *device, TickType_t wait) { spi_host_t *const host = device->host; SPI_CHECK(wait == portMAX_DELAY, "acquire finite time not supported now.", ESP_ERR_INVALID_ARG); SPI_CHECK(!spi_bus_device_is_polling(device), "Cannot acquire bus when a polling transaction is in progress.", ESP_ERR_INVALID_STATE); esp_err_t ret = spi_bus_lock_acquire_start(device->dev_lock, wait); if (ret != ESP_OK) { return ret; }{...} host->device_acquiring_lock = device; ESP_LOGD(SPI_TAG, "device%d locked the bus", device->id); #ifdef CONFIG_PM_ENABLE // though we don't suggest to block the task before ``release_bus``, still allow doing so. // this keeps the spi clock at 80MHz even if all tasks are blocked esp_pm_lock_acquire(host->bus_attr->pm_lock);/* ... */ #endif //configure the device ahead so that we don't need to do it again in the following transactions spi_setup_device(host->device[device->id]); //the DMA is also occupied by the device, all the slave devices that using DMA should wait until bus released. #if CONFIG_IDF_TARGET_ESP32 if (host->bus_attr->dma_enabled) { //This workaround is only for esp32, where tx_dma_chan and rx_dma_chan are always same spicommon_dmaworkaround_transfer_active(host->dma_ctx->tx_dma_chan.chan_id); }{...} #endif/* ... */ //#if CONFIG_IDF_TARGET_ESP32 return ESP_OK; }{ ... } // This function restore configurations required in the non-polling mode void SPI_MASTER_ISR_ATTR spi_device_release_bus(spi_device_t *dev) { spi_host_t *host = dev->host; if (spi_bus_device_is_polling(dev)) { ESP_EARLY_LOGE(SPI_TAG, "Cannot release bus when a polling transaction is in progress."); assert(0); }{...} #if CONFIG_IDF_TARGET_ESP32 if (host->bus_attr->dma_enabled) { //This workaround is only for esp32, where tx_dma_chan and rx_dma_chan are always same spicommon_dmaworkaround_idle(host->dma_ctx->tx_dma_chan.chan_id); }{...} //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset./* ... */ #endif //#if CONFIG_IDF_TARGET_ESP32 //allow clock to be lower than 80MHz when all tasks blocked #ifdef CONFIG_PM_ENABLE //Release APB frequency lock esp_pm_lock_release(host->bus_attr->pm_lock);/* ... */ #endif ESP_LOGD(SPI_TAG, "device%d release bus", dev->id); host->device_acquiring_lock = NULL; esp_err_t ret = spi_bus_lock_acquire_end(dev->dev_lock); assert(ret == ESP_OK); (void) ret; }{ ... } esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_start(spi_device_handle_t handle, spi_transaction_t *trans_desc, TickType_t ticks_to_wait) { esp_err_t ret; SPI_CHECK(ticks_to_wait == portMAX_DELAY, "currently timeout is not available for polling transactions", ESP_ERR_INVALID_ARG); ret = check_trans_valid(handle, trans_desc); if (ret != ESP_OK) { return ret; }{...} SPI_CHECK(!spi_bus_device_is_polling(handle), "Cannot send polling transaction while the previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE); spi_host_t *host = handle->host; spi_trans_priv_t priv_polling_trans = { .trans = trans_desc, }; ret = setup_priv_desc(host, &priv_polling_trans); if (ret != ESP_OK) { return ret; }{...} /* If device_acquiring_lock is set to handle, it means that the user has already * acquired the bus thanks to the function `spi_device_acquire_bus()`. * In that case, we don't need to take the lock again. *//* ... */ if (host->device_acquiring_lock != handle) { /* The user cannot ask for the CS to keep active has the bus is not locked/acquired. */ if ((trans_desc->flags & SPI_TRANS_CS_KEEP_ACTIVE) != 0) { ret = ESP_ERR_INVALID_ARG; }{...} else { ret = spi_bus_lock_acquire_start(handle->dev_lock, ticks_to_wait); }{...} }{...} else { ret = spi_bus_lock_wait_bg_done(handle->dev_lock, ticks_to_wait); }{...} if (ret != ESP_OK) { uninstall_priv_desc(&priv_polling_trans); ESP_LOGE(SPI_TAG, "polling can't get buslock"); return ret; }{...} //After holding the buslock, common resource can be accessed !! //Polling, no interrupt is used. host->polling = true; host->cur_trans_buf = priv_polling_trans; ESP_LOGV(SPI_TAG, "polling trans"); spi_new_trans(handle, &host->cur_trans_buf); return ESP_OK; }{ ... } esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_end(spi_device_handle_t handle, TickType_t ticks_to_wait) { SPI_CHECK(handle != NULL, "invalid dev handle", ESP_ERR_INVALID_ARG); spi_host_t *host = handle->host; assert(host->cur_cs == handle->id); assert(handle == get_acquiring_dev(host)); TickType_t start = xTaskGetTickCount(); while (!spi_hal_usr_is_done(&host->hal)) { TickType_t end = xTaskGetTickCount(); if (end - start > ticks_to_wait) { return ESP_ERR_TIMEOUT; }{...} }{...} #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE //invalidate here to let user access rx data in post_cb if possible const spi_bus_attr_t *bus_attr = host->bus_attr; if (bus_attr->dma_enabled && host->cur_trans_buf.buffer_to_rcv) { uint16_t alignment = bus_attr->internal_mem_align_size; uint32_t buffer_byte_len = (host->cur_trans_buf.trans->rxlength + 7) / 8; buffer_byte_len = (buffer_byte_len + alignment - 1) & (~(alignment - 1)); esp_err_t ret = esp_cache_msync((void *)host->cur_trans_buf.buffer_to_rcv, buffer_byte_len, ESP_CACHE_MSYNC_FLAG_DIR_M2C); if (ret != ESP_OK) { return ret; }{...} }{...} #endif/* ... */ ESP_LOGV(SPI_TAG, "polling trans done"); //deal with the in-flight transaction spi_post_trans(host); //release temporary buffers uninstall_priv_desc(&host->cur_trans_buf); host->polling = false; /* Once again here, if device_acquiring_lock is set to `handle`, it means that the user has already * acquired the bus thanks to the function `spi_device_acquire_bus()`. * In that case, the lock must not be released now because . *//* ... */ if (host->device_acquiring_lock != handle) { assert(host->device_acquiring_lock == NULL); spi_bus_lock_acquire_end(handle->dev_lock); }{...} return ESP_OK; }{ ... } esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_transmit(spi_device_handle_t handle, spi_transaction_t* trans_desc) { esp_err_t ret; ret = spi_device_polling_start(handle, trans_desc, portMAX_DELAY); if (ret != ESP_OK) { return ret; }{...} return spi_device_polling_end(handle, portMAX_DELAY); }{ ... } esp_err_t spi_bus_get_max_transaction_len(spi_host_device_t host_id, size_t *max_bytes) { SPI_CHECK(is_valid_host(host_id), "invalid host", ESP_ERR_INVALID_ARG); if (bus_driver_ctx[host_id] == NULL || max_bytes == NULL) { return ESP_ERR_INVALID_ARG; }{...} spi_host_t *host = bus_driver_ctx[host_id]; if (host->bus_attr->dma_enabled) { *max_bytes = MIN(host->bus_attr->max_transfer_sz, (SPI_LL_DMA_MAX_BIT_LEN / 8)); }{...} else { *max_bytes = MIN(host->bus_attr->max_transfer_sz, (SPI_LL_CPU_MAX_BIT_LEN / 8)); }{...} return ESP_OK; }{ ... } #if SOC_SPI_SCT_SUPPORTED /*----------------------------------------------------------- * Below functions should be in the same spinlock *-----------------------------------------------------------*//* ... */ static SPI_MASTER_ISR_ATTR spi_dma_desc_t *s_sct_setup_desc_anywhere(spi_dma_desc_t *desc_root, spi_dma_desc_t *desc_start, uint32_t desc_num, const void *data, int len, bool is_rx) { while (len) { int dmachunklen = len; if (dmachunklen > LLDESC_MAX_NUM_PER_DESC) { dmachunklen = LLDESC_MAX_NUM_PER_DESC; }{...} if (is_rx) { //Receive needs DMA length rounded to next 32-bit boundary desc_start->dw0.size = (dmachunklen + 3) & (~3); }{...} else { desc_start->dw0.size = dmachunklen; desc_start->dw0.length = dmachunklen; }{...} desc_start->buffer = (uint8_t *)data; desc_start->dw0.suc_eof = 0; desc_start->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; len -= dmachunklen; data += dmachunklen; if (len) { desc_start->next = (desc_start == &desc_root[desc_num - 1]) ? desc_root : &desc_start[1]; desc_start = desc_start->next; }{...} }{...} // desc_start is now walk to the end of used desc desc_start->dw0.suc_eof = 1; //Mark last DMA desc as end of stream. desc_start->next = NULL; return desc_start; }{...} static SPI_MASTER_ISR_ATTR int s_sct_desc_get_required_num(uint32_t bytes_len) { return (bytes_len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC; }{...} /*------------------------- * TX *------------------------*//* ... */ static void SPI_MASTER_ISR_ATTR spi_hal_sct_tx_dma_desc_recycle(spi_sct_desc_ctx_t *desc_ctx, uint32_t recycle_num) { desc_ctx->tx_free_desc_num += recycle_num; }{...} static void SPI_MASTER_ISR_ATTR s_sct_prepare_tx_seg(spi_sct_desc_ctx_t *desc_ctx, const uint32_t conf_buffer[SOC_SPI_SCT_BUFFER_NUM_MAX], const void *send_buffer, uint32_t buf_len_bytes, spi_dma_desc_t **trans_head) { const spi_dma_ctx_t *dma_ctx = __containerof(desc_ctx, spi_host_t, sct_desc_pool)->dma_ctx; *trans_head = desc_ctx->cur_tx_seg_link; s_sct_setup_desc_anywhere(dma_ctx->dmadesc_tx, desc_ctx->cur_tx_seg_link, dma_ctx->dma_desc_num, conf_buffer, SOC_SPI_SCT_BUFFER_NUM_MAX * 4, false); spi_dma_desc_t *conf_buffer_link = desc_ctx->cur_tx_seg_link; desc_ctx->tx_free_desc_num -= 1; desc_ctx->tx_seg_link_tail = desc_ctx->cur_tx_seg_link; desc_ctx->cur_tx_seg_link++; if (desc_ctx->cur_tx_seg_link == dma_ctx->dmadesc_tx + dma_ctx->dma_desc_num) { //As there is enough space, so we simply point this to the pool head desc_ctx->cur_tx_seg_link = dma_ctx->dmadesc_tx; }{...} if (send_buffer && buf_len_bytes) { desc_ctx->tx_seg_link_tail = s_sct_setup_desc_anywhere(dma_ctx->dmadesc_tx, desc_ctx->cur_tx_seg_link, dma_ctx->dma_desc_num, send_buffer, buf_len_bytes, false); conf_buffer_link->next = desc_ctx->cur_tx_seg_link; desc_ctx->cur_tx_seg_link = desc_ctx->tx_seg_link_tail + 1; if (desc_ctx->cur_tx_seg_link == dma_ctx->dmadesc_tx + dma_ctx->dma_desc_num) { //As there is enough space, so we simply point this to the pool head desc_ctx->cur_tx_seg_link = dma_ctx->dmadesc_tx; }{...} desc_ctx->tx_free_desc_num -= s_sct_desc_get_required_num(buf_len_bytes); }{...} }{...} static esp_err_t SPI_MASTER_ISR_ATTR spi_hal_sct_new_tx_dma_desc_head(spi_sct_desc_ctx_t *desc_ctx, const uint32_t conf_buffer[SOC_SPI_SCT_BUFFER_NUM_MAX], const void *send_buffer, uint32_t buf_len_bytes, spi_dma_desc_t **trans_head, uint32_t *used_desc_num) { //1 desc for the conf_buffer, other for data. int desc_need = 1 + s_sct_desc_get_required_num(buf_len_bytes); if (desc_ctx->tx_free_desc_num < desc_need) { return ESP_ERR_NO_MEM; }{...} s_sct_prepare_tx_seg(desc_ctx, conf_buffer, send_buffer, buf_len_bytes, trans_head); *used_desc_num = desc_need; return ESP_OK; }{...} static esp_err_t SPI_MASTER_ISR_ATTR spi_hal_sct_link_tx_seg_dma_desc(spi_sct_desc_ctx_t *desc_ctx, const uint32_t conf_buffer[SOC_SPI_SCT_BUFFER_NUM_MAX], const void *send_buffer, uint32_t buf_len_bytes, uint32_t *used_desc_num) { //1 desc for the conf_buffer, other for data. int desc_need = 1 + s_sct_desc_get_required_num(buf_len_bytes); if (desc_ctx->tx_free_desc_num < desc_need) { return ESP_ERR_NO_MEM; }{...} if (desc_ctx->tx_seg_link_tail) { //Connect last segment to the current segment, as we're sure the `s_sct_prepare_tx_seg` next won't fail. desc_ctx->tx_seg_link_tail->next = desc_ctx->cur_tx_seg_link; }{...} spi_dma_desc_t *internal_head = NULL; s_sct_prepare_tx_seg(desc_ctx, conf_buffer, send_buffer, buf_len_bytes, &internal_head); *used_desc_num += desc_need; return ESP_OK; }{...} // /*------------------------- // * RX // *------------------------*/ static void SPI_MASTER_ISR_ATTR spi_hal_sct_rx_dma_desc_recycle(spi_sct_desc_ctx_t *desc_ctx, uint32_t recycle_num) { desc_ctx->rx_free_desc_num += recycle_num; }{...} static void SPI_MASTER_ISR_ATTR s_sct_prepare_rx_seg(spi_sct_desc_ctx_t *desc_ctx, const void *recv_buffer, uint32_t buf_len_bytes, spi_dma_desc_t **trans_head) { const spi_dma_ctx_t *dma_ctx = __containerof(desc_ctx, spi_host_t, sct_desc_pool)->dma_ctx; *trans_head = desc_ctx->cur_rx_seg_link; desc_ctx->rx_seg_link_tail = s_sct_setup_desc_anywhere(dma_ctx->dmadesc_rx, desc_ctx->cur_rx_seg_link, dma_ctx->dma_desc_num, recv_buffer, buf_len_bytes, true); desc_ctx->cur_rx_seg_link = desc_ctx->rx_seg_link_tail + 1; if (desc_ctx->cur_rx_seg_link == dma_ctx->dmadesc_rx + dma_ctx->dma_desc_num) { //As there is enough space, so we simply point this to the pool head desc_ctx->cur_rx_seg_link = dma_ctx->dmadesc_rx; }{...} desc_ctx->rx_free_desc_num -= s_sct_desc_get_required_num(buf_len_bytes); }{...} static esp_err_t SPI_MASTER_ISR_ATTR spi_hal_sct_new_rx_dma_desc_head(spi_sct_desc_ctx_t *desc_ctx, const void *recv_buffer, uint32_t buf_len_bytes, spi_dma_desc_t **trans_head, uint32_t *used_desc_num) { int desc_need = s_sct_desc_get_required_num(buf_len_bytes); if (desc_ctx->rx_free_desc_num < desc_need) { return ESP_ERR_NO_MEM; }{...} s_sct_prepare_rx_seg(desc_ctx, recv_buffer, buf_len_bytes, trans_head); *used_desc_num = desc_need; return ESP_OK; }{...} static esp_err_t SPI_MASTER_ISR_ATTR spi_hal_sct_link_rx_seg_dma_desc(spi_sct_desc_ctx_t *desc_ctx, const void *recv_buffer, uint32_t buf_len_bytes, uint32_t *used_desc_num) { int desc_need = s_sct_desc_get_required_num(buf_len_bytes); if (desc_ctx->rx_free_desc_num < desc_need) { return ESP_ERR_NO_MEM; }{...} if (desc_ctx->rx_seg_link_tail) { //Connect last segment to the current segment, as we're sure the `s_sct_prepare_tx_seg` next won't fail. desc_ctx->rx_seg_link_tail->next = desc_ctx->cur_rx_seg_link; }{...} spi_dma_desc_t *internal_head = NULL; s_sct_prepare_rx_seg(desc_ctx, recv_buffer, buf_len_bytes, &internal_head); *used_desc_num += desc_need; return ESP_OK; }{...} static void s_spi_sct_reset_dma_pool(const spi_dma_ctx_t *dma_ctx, spi_sct_desc_ctx_t *sct_desc_pool) { sct_desc_pool->tx_free_desc_num = dma_ctx->dma_desc_num; sct_desc_pool->rx_free_desc_num = dma_ctx->dma_desc_num; sct_desc_pool->cur_tx_seg_link = dma_ctx->dmadesc_tx; sct_desc_pool->cur_rx_seg_link = dma_ctx->dmadesc_rx; sct_desc_pool->tx_seg_link_tail = NULL; sct_desc_pool->rx_seg_link_tail = NULL; }{...} /** * This function will turn this host into SCT (segmented-configure-transfer) mode. * * No concurrency guarantee, if a transaction is ongoing, calling this will lead to wrong transaction *//* ... */ esp_err_t spi_bus_multi_trans_mode_enable(spi_device_handle_t handle, bool enable) { SPI_CHECK(handle, "Invalid arguments.", ESP_ERR_INVALID_ARG); SPI_CHECK(SOC_SPI_SCT_SUPPORTED_PERIPH(handle->host->id), "Invalid arguments", ESP_ERR_INVALID_ARG); SPI_CHECK(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX, "SCT mode only available under Half Duplex mode", ESP_ERR_INVALID_STATE); SPI_CHECK(!spi_bus_device_is_polling(handle), "Cannot queue new transaction while previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE); SPI_CHECK(uxQueueMessagesWaiting(handle->trans_queue) == 0, "Cannot enable SCT mode when internal Queue still has items", ESP_ERR_INVALID_STATE); esp_err_t ret = ESP_OK; if (enable) { /** * This `fake_trans` transaction descriptor is only used to initialise the SPI registers * This transaction won't be triggered. *//* ... */ spi_transaction_t fake_trans = { .flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA, .length = 8, .tx_data = {0xff}, }{...}; spi_host_t *host = handle->host; spi_trans_priv_t trans_buf = { .trans = &fake_trans }; spi_hal_context_t *hal = &handle->host->hal; spi_hal_dev_config_t *hal_dev = &handle->hal_dev; //As we know the `fake_trans` are internal, so no need to `uninstall_priv_desc` ret = setup_priv_desc(host, &trans_buf); if (ret != ESP_OK) { return ret; }{...} //init SPI registers spi_hal_setup_device(hal, hal_dev); spi_hal_trans_config_t hal_trans = {}; spi_format_hal_trans_struct(handle, &trans_buf, &hal_trans); spi_hal_setup_trans(hal, hal_dev, &hal_trans); #if CONFIG_IDF_TARGET_ESP32S2 // conf_base need ensure transaction gap len more than about 2us under different freq. // conf_base only configurable on s2. spi_hal_sct_setup_conf_base(hal, handle->hal_dev.timing_conf.real_freq / 600000);/* ... */ #endif s_spi_sct_reset_dma_pool(host->dma_ctx, &host->sct_desc_pool); spi_hal_sct_init(hal); }{...} else { spi_hal_sct_deinit(&handle->host->hal); }{...} handle->host->sct_mode_enabled = enable; return ESP_OK; }{...} static void SPI_MASTER_ATTR s_sct_init_conf_buffer(spi_hal_context_t *hal, uint32_t *buffer, uint32_t trans_num) { // read from HW need waiting for slower APB clock domain return data, loop to contact slow clock domain will waste time. // use one imagen then copied by cpu instead. uint32_t conf_buffer_img[SOC_SPI_SCT_BUFFER_NUM_MAX]; spi_hal_sct_init_conf_buffer(hal, conf_buffer_img); for (int i = 0; i < trans_num; i++) { memcpy(&buffer[i * SOC_SPI_SCT_BUFFER_NUM_MAX], conf_buffer_img, sizeof(conf_buffer_img)); }{...} }{...} static void SPI_MASTER_ATTR s_sct_format_conf_buffer(spi_device_handle_t handle, spi_multi_transaction_t *seg_trans_desc, uint32_t *buffer, bool seg_end) { spi_hal_context_t *hal = &handle->host->hal; spi_hal_dev_config_t *hal_dev = &handle->hal_dev; spi_hal_seg_config_t seg_config = {}; //prep if (seg_trans_desc->seg_trans_flags & SPI_MULTI_TRANS_PREP_LEN_UPDATED) { seg_config.cs_setup = seg_trans_desc->cs_ena_pretrans; }{...} else { seg_config.cs_setup = handle->cfg.cs_ena_pretrans; }{...} //cmd seg_config.cmd = seg_trans_desc->base.cmd; if (seg_trans_desc->seg_trans_flags & SPI_MULTI_TRANS_CMD_LEN_UPDATED) { seg_config.cmd_bits = seg_trans_desc->command_bits; }{...} else { seg_config.cmd_bits = handle->cfg.command_bits; }{...} //addr seg_config.addr = seg_trans_desc->base.addr; if (seg_trans_desc->seg_trans_flags & SPI_MULTI_TRANS_ADDR_LEN_UPDATED) { seg_config.addr_bits = seg_trans_desc->address_bits; }{...} else { seg_config.addr_bits = handle->cfg.address_bits; }{...} //dummy if (seg_trans_desc->seg_trans_flags & SPI_MULTI_TRANS_DUMMY_LEN_UPDATED) { seg_config.dummy_bits = seg_trans_desc->dummy_bits; }{...} else { seg_config.dummy_bits = handle->cfg.dummy_bits; }{...} //dout seg_config.tx_bitlen = seg_trans_desc->base.length; //din seg_config.rx_bitlen = seg_trans_desc->base.rxlength; //done if (seg_trans_desc->seg_trans_flags & SPI_MULTI_TRANS_DONE_LEN_UPDATED) { seg_config.cs_hold = seg_trans_desc->cs_ena_posttrans; }{...} else { seg_config.cs_hold = handle->cfg.cs_ena_posttrans; }{...} //conf if (seg_end) { seg_config.seg_end = true; }{...} seg_config.seg_gap_len = seg_trans_desc->sct_gap_len; // set line mode to hal_config spi_sct_set_hal_trans_config(seg_trans_desc, &hal->trans_config); spi_hal_sct_format_conf_buffer(hal, &seg_config, hal_dev, buffer); }{...} esp_err_t SPI_MASTER_ATTR spi_device_queue_multi_trans(spi_device_handle_t handle, spi_multi_transaction_t *seg_trans_desc, uint32_t trans_num, TickType_t ticks_to_wait) { SPI_CHECK(handle, "Invalid arguments.", ESP_ERR_INVALID_ARG); SPI_CHECK(SOC_SPI_SCT_SUPPORTED_PERIPH(handle->host->id), "Invalid arguments", ESP_ERR_INVALID_ARG); SPI_CHECK(handle->host->sct_mode_enabled == 1, "SCT mode isn't enabled", ESP_ERR_INVALID_STATE); esp_err_t ret = ESP_OK; uint16_t alignment = handle->host->bus_attr->internal_mem_align_size; uint32_t *conf_buffer = heap_caps_aligned_alloc(alignment, (trans_num * SOC_SPI_SCT_BUFFER_NUM_MAX * sizeof(uint32_t)), MALLOC_CAP_DMA); SPI_CHECK(conf_buffer, "No enough memory", ESP_ERR_NO_MEM); for (int i = 0; i < trans_num; i++) { ret = check_trans_valid(handle, (spi_transaction_t *)&seg_trans_desc[i]); if (ret != ESP_OK) { return ret; }{...} }{...} SPI_CHECK(!spi_bus_device_is_polling(handle), "Cannot queue new transaction while previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE); spi_hal_context_t *hal = &handle->host->hal; s_sct_init_conf_buffer(hal, conf_buffer, trans_num); static esp_err_t dma_desc_status = ESP_FAIL; spi_dma_desc_t *tx_seg_head = NULL; uint32_t tx_used_dma_desc_num = 0; uint32_t tx_buf_len = 0; spi_dma_desc_t *rx_seg_head = NULL; uint32_t rx_used_dma_desc_num = 0; uint32_t rx_buf_len = 0; /*--------------Get segment head--------------*/ s_sct_format_conf_buffer(handle, &seg_trans_desc[0], conf_buffer, (trans_num == 1)); //TX tx_buf_len = (seg_trans_desc[0].base.length + 8 - 1) / 8; portENTER_CRITICAL(&handle->host->spinlock); dma_desc_status = spi_hal_sct_new_tx_dma_desc_head(&handle->host->sct_desc_pool, conf_buffer, seg_trans_desc[0].base.tx_buffer, tx_buf_len, &tx_seg_head, &tx_used_dma_desc_num); portEXIT_CRITICAL(&handle->host->spinlock); SPI_CHECK(dma_desc_status == ESP_OK, "No available dma descriptors, increase the `max_transfer_sz`, or wait queued transactions are done", ESP_ERR_INVALID_STATE); //RX //This is modified to the same length as tx length, when in fd mode, else it's `rxlength` rx_buf_len = (seg_trans_desc[0].base.rxlength + 8 - 1) / 8; if (seg_trans_desc[0].base.rx_buffer) { portENTER_CRITICAL(&handle->host->spinlock); dma_desc_status = spi_hal_sct_new_rx_dma_desc_head(&handle->host->sct_desc_pool, seg_trans_desc[0].base.rx_buffer, rx_buf_len, &rx_seg_head, &rx_used_dma_desc_num); portEXIT_CRITICAL(&handle->host->spinlock); SPI_CHECK(dma_desc_status == ESP_OK, "No available dma descriptors, increase the `max_transfer_sz`, or wait queued transactions are done", ESP_ERR_INVALID_STATE); }{...} --------------Get segment head /*--------------Prepare other segments--------------*/ for (int i = 1; i < trans_num; i++) { s_sct_format_conf_buffer(handle, &seg_trans_desc[i], &conf_buffer[i * SOC_SPI_SCT_BUFFER_NUM_MAX], (i == (trans_num - 1))); //TX tx_buf_len = (seg_trans_desc[i].base.length + 8 - 1) / 8; portENTER_CRITICAL(&handle->host->spinlock); dma_desc_status = spi_hal_sct_link_tx_seg_dma_desc(&handle->host->sct_desc_pool, &conf_buffer[i * SOC_SPI_SCT_BUFFER_NUM_MAX], seg_trans_desc[i].base.tx_buffer, tx_buf_len, &tx_used_dma_desc_num); portEXIT_CRITICAL(&handle->host->spinlock); SPI_CHECK(dma_desc_status == ESP_OK, "No available dma descriptors, increase the `max_transfer_sz`, or wait queued transactions are done", ESP_ERR_INVALID_STATE); //RX if (seg_trans_desc[i].base.rx_buffer) { //This is modified to the same length as tx length, when in fd mode, else it's `rxlength` rx_buf_len = (seg_trans_desc[i].base.rxlength + 8 - 1) / 8; portENTER_CRITICAL(&handle->host->spinlock); dma_desc_status = spi_hal_sct_link_rx_seg_dma_desc(&handle->host->sct_desc_pool, seg_trans_desc[i].base.rx_buffer, rx_buf_len, &rx_used_dma_desc_num); portEXIT_CRITICAL(&handle->host->spinlock); }{...} }{...} #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(handle->host->bus_attr->pm_lock); #endif spi_sct_trans_priv_t sct_desc = { .tx_seg_head = tx_seg_head, .rx_seg_head = rx_seg_head, .sct_trans_desc_head = seg_trans_desc, .sct_conf_buffer = conf_buffer, .tx_used_desc_num = tx_used_dma_desc_num, .rx_used_desc_num = rx_used_dma_desc_num, }{...}; BaseType_t r = xQueueSend(handle->trans_queue, (void *)&sct_desc, ticks_to_wait); if (!r) { #ifdef CONFIG_PM_ENABLE //Release APB frequency lock esp_pm_lock_release(handle->host->bus_attr->pm_lock);/* ... */ #endif return ESP_ERR_TIMEOUT; }{...} // The ISR will be invoked at correct time by the lock with `spi_bus_intr_enable`. ret = spi_bus_lock_bg_request(handle->dev_lock); if (ret != ESP_OK) { return ret; }{...} return ESP_OK; }{...} esp_err_t SPI_MASTER_ATTR spi_device_get_multi_trans_result(spi_device_handle_t handle, spi_multi_transaction_t **seg_trans_desc, TickType_t ticks_to_wait) { SPI_CHECK(handle, "Invalid arguments.", ESP_ERR_INVALID_ARG); SPI_CHECK(SOC_SPI_SCT_SUPPORTED_PERIPH(handle->host->id), "Invalid arguments", ESP_ERR_INVALID_ARG); SPI_CHECK(handle->host->sct_mode_enabled == 1, "SCT mode isn't enabled", ESP_ERR_INVALID_STATE); spi_sct_trans_priv_t sct_desc = {}; BaseType_t r = xQueueReceive(handle->ret_queue, (void *)&sct_desc, ticks_to_wait); if (!r) { return ESP_ERR_TIMEOUT; }{...} *seg_trans_desc = sct_desc.sct_trans_desc_head; return ESP_OK; }{...} /* ... */#endif //#if SOC_SPI_SCT_SUPPORTED
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.