1
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
31
32
33
34
35
36
37
45
46
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
96
97
98
105
106
107
108
109
110
111
112
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
130
131
132
133
134
135
136
139
140
141
142
143
144
150
151
152
153
154
155
160
161
162
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
187
188
189
190
193
194
200
205
206
207
208
215
216
217
218
219
220
221
222
223
224
225
226
227
228
232
233
234
235
237
238
241
242
246
247
248
249
250
251
252
253
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
280
281
282
283
284
304
305
306
307
308
309
310
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
351
354
355
361
364
372
373
374
375
376
377
378
409
410
433
434
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
463
485
500
511
534
541
542
543
544
545
546
547
548
549
550
551
554
555
559
560
566
567
568
569
574
575
576
577
578
579
580
581
582
586
587
588
589
590
591
592
/* ... */
#include <string.h>
#include <unistd.h>
#include "esp_err.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_pm.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/task.h"
#include "soc/sdmmc_periph.h"
#include "driver/sdmmc_types.h"
#include "driver/sdmmc_defs.h"
#include "driver/sdmmc_host.h"
#include "esp_cache.h"
#include "esp_private/esp_cache_private.h"
#include "sdmmc_internal.h"
#include "soc/soc_caps.h"
#include "hal/sdmmc_ll.h"19 includes
/* ... */
#define SDMMC_DMA_DESC_CNT 4
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
static const char* TAG = "sdmmc_req";
typedef enum {
SDMMC_IDLE,
SDMMC_SENDING_CMD,
SDMMC_SENDING_DATA,
SDMMC_BUSY,
SDMMC_SENDING_VOLTAGE_SWITCH,
SDMMC_WAITING_VOLTAGE_SWITCH,
}{ ... } sdmmc_req_state_t;
typedef struct {
uint8_t* ptr;
size_t size_remaining;
size_t next_desc;
size_t desc_remaining;
}{ ... } sdmmc_transfer_state_t;
const uint32_t SDMMC_DATA_ERR_MASK =
SDMMC_INTMASK_DTO | SDMMC_INTMASK_DCRC |
SDMMC_INTMASK_HTO | SDMMC_INTMASK_SBE |
SDMMC_INTMASK_EBE;
const uint32_t SDMMC_DMA_DONE_MASK =
SDMMC_IDMAC_INTMASK_RI | SDMMC_IDMAC_INTMASK_TI |
SDMMC_IDMAC_INTMASK_NI;
const uint32_t SDMMC_CMD_ERR_MASK =
SDMMC_INTMASK_RTO |
SDMMC_INTMASK_RCRC |
SDMMC_INTMASK_RESP_ERR;
DRAM_DMA_ALIGNED_ATTR static sdmmc_desc_t s_dma_desc[SDMMC_DMA_DESC_CNT];
static sdmmc_transfer_state_t s_cur_transfer = { 0 };
static QueueHandle_t s_request_mutex;
static bool s_is_app_cmd;
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_pm_lock;
#endif
static esp_err_t handle_idle_state_events(void);
static sdmmc_hw_cmd_t make_hw_cmd(sdmmc_command_t* cmd);
static esp_err_t handle_event(int slot, sdmmc_command_t* cmd, sdmmc_req_state_t* state,
sdmmc_event_t* unhandled_events);
static esp_err_t process_events(int slot, sdmmc_event_t evt, sdmmc_command_t* cmd,
sdmmc_req_state_t* pstate, sdmmc_event_t* unhandled_events);
static void process_command_response(uint32_t status, sdmmc_command_t* cmd);
static void fill_dma_descriptors(size_t num_desc);
static size_t get_free_descriptors_count(void);
static bool wait_for_busy_cleared(uint32_t timeout_ms);
static void handle_voltage_switch_stage1(int slot, sdmmc_command_t* cmd);
static void handle_voltage_switch_stage2(int slot, sdmmc_command_t* cmd);
static void handle_voltage_switch_stage3(int slot, sdmmc_command_t* cmd);
esp_err_t sdmmc_host_transaction_handler_init(void)
{
assert(s_request_mutex == NULL);
s_request_mutex = xSemaphoreCreateMutex();
if (!s_request_mutex) {
return ESP_ERR_NO_MEM;
}{...}
s_is_app_cmd = false;
#ifdef CONFIG_PM_ENABLE
esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "sdmmc", &s_pm_lock);
if (err != ESP_OK) {
vSemaphoreDelete(s_request_mutex);
s_request_mutex = NULL;
return err;
}{...}
#endif/* ... */
return ESP_OK;
}{ ... }
void sdmmc_host_transaction_handler_deinit(void)
{
assert(s_request_mutex);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;/* ... */
#endif
vSemaphoreDelete(s_request_mutex);
s_request_mutex = NULL;
}{ ... }
esp_err_t sdmmc_host_do_transaction(int slot, sdmmc_command_t* cmdinfo)
{
esp_err_t ret;
xSemaphoreTake(s_request_mutex, portMAX_DELAY);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_acquire(s_pm_lock);
#endif
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
size_t cache_sync_len = 0;/* ... */
#endif
handle_idle_state_events();
if (cmdinfo->opcode == SD_SWITCH_VOLTAGE) {
handle_voltage_switch_stage1(slot, cmdinfo);
}{...}
sdmmc_hw_cmd_t hw_cmd = make_hw_cmd(cmdinfo);
if (cmdinfo->data) {
if (cmdinfo->datalen >= 4 && cmdinfo->datalen % 4 != 0) {
ESP_LOGE(TAG, "%s: invalid size: total=%d",
__func__, cmdinfo->datalen);
ret = ESP_ERR_INVALID_SIZE;
goto out;
}{...}
esp_dma_mem_info_t dma_mem_info;
sdmmc_host_get_dma_info(slot, &dma_mem_info);
#ifdef SOC_SDMMC_PSRAM_DMA_CAPABLE
dma_mem_info.extra_heap_caps |= MALLOC_CAP_SPIRAM;
#endif
if (!esp_dma_is_buffer_alignment_satisfied(cmdinfo->data, cmdinfo->buflen, dma_mem_info)) {
ESP_LOGE(TAG, "%s: buffer %p can not be used for DMA", __func__, cmdinfo->data);
ret = ESP_ERR_INVALID_ARG;
goto out;
}{...}
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
cache_sync_len = cmdinfo->buflen;
ret = esp_cache_msync((void *)cmdinfo->data, cache_sync_len, ESP_CACHE_MSYNC_FLAG_DIR_C2M);
if (ret != ESP_OK) {
goto out;
}{...}
#endif/* ... */
memset(s_dma_desc, 0, sizeof(s_dma_desc));
s_dma_desc[0].first_descriptor = 1;
s_cur_transfer.ptr = (uint8_t*) cmdinfo->data;
s_cur_transfer.size_remaining = cmdinfo->datalen;
s_cur_transfer.next_desc = 0;
s_cur_transfer.desc_remaining = (cmdinfo->datalen + SDMMC_DMA_MAX_BUF_LEN - 1) / SDMMC_DMA_MAX_BUF_LEN;
fill_dma_descriptors(SDMMC_DMA_DESC_CNT);
sdmmc_host_dma_prepare(&s_dma_desc[0], cmdinfo->blklen, cmdinfo->datalen);
}{...}
ret = sdmmc_host_start_command(slot, hw_cmd, cmdinfo->arg);
if (ret != ESP_OK) {
goto out;
}{...}
cmdinfo->error = ESP_OK;
sdmmc_req_state_t state = SDMMC_SENDING_CMD;
if (cmdinfo->opcode == SD_SWITCH_VOLTAGE) {
state = SDMMC_SENDING_VOLTAGE_SWITCH;
}{...}
sdmmc_event_t unhandled_events = { 0 };
while (state != SDMMC_IDLE) {
ret = handle_event(slot, cmdinfo, &state, &unhandled_events);
if (ret != ESP_OK) {
break;
}{...}
}{...}
if (ret == ESP_OK && (cmdinfo->flags & SCF_WAIT_BUSY)) {
if (!wait_for_busy_cleared(cmdinfo->timeout_ms)) {
ret = ESP_ERR_TIMEOUT;
}{...}
}{...}
s_is_app_cmd = (ret == ESP_OK && cmdinfo->opcode == MMC_APP_CMD);
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
if (cmdinfo->data) {
ret = esp_cache_msync((void *)cmdinfo->data, cache_sync_len, ESP_CACHE_MSYNC_FLAG_DIR_M2C);
if (ret != ESP_OK) {
goto out;
}{...}
}{...}
#endif/* ... */
out:
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
#endif
xSemaphoreGive(s_request_mutex);
return ret;
}{ ... }
static size_t get_free_descriptors_count(void)
{
const size_t next = s_cur_transfer.next_desc;
size_t count = 0;
/* ... */
for (size_t i = 0; i < SDMMC_DMA_DESC_CNT; ++i) {
sdmmc_desc_t* desc = &s_dma_desc[(next + i) % SDMMC_DMA_DESC_CNT];
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
esp_err_t ret = esp_cache_msync((void *)desc, sizeof(sdmmc_desc_t), ESP_CACHE_MSYNC_FLAG_DIR_M2C);
assert(ret == ESP_OK);/* ... */
#endif
if (desc->owned_by_idmac) {
break;
}{...}
++count;
if (desc->next_desc_ptr == NULL) {
break;
}{...}
}{...}
return count;
}{ ... }
static void fill_dma_descriptors(size_t num_desc)
{
for (size_t i = 0; i < num_desc; ++i) {
if (s_cur_transfer.size_remaining == 0) {
return;
}{...}
const size_t next = s_cur_transfer.next_desc;
sdmmc_desc_t* desc = &s_dma_desc[next];
assert(!desc->owned_by_idmac);
size_t size_to_fill =
(s_cur_transfer.size_remaining < SDMMC_DMA_MAX_BUF_LEN) ?
s_cur_transfer.size_remaining : SDMMC_DMA_MAX_BUF_LEN;
bool last = size_to_fill == s_cur_transfer.size_remaining;
desc->last_descriptor = last;
desc->second_address_chained = 1;
desc->owned_by_idmac = 1;
desc->buffer1_ptr = s_cur_transfer.ptr;
desc->next_desc_ptr = (last) ? NULL : &s_dma_desc[(next + 1) % SDMMC_DMA_DESC_CNT];
assert(size_to_fill < 4 || size_to_fill % 4 == 0);
desc->buffer1_size = (size_to_fill + 3) & (~3);
s_cur_transfer.size_remaining -= size_to_fill;
s_cur_transfer.ptr += size_to_fill;
s_cur_transfer.next_desc = (s_cur_transfer.next_desc + 1) % SDMMC_DMA_DESC_CNT;
ESP_LOGV(TAG, "fill %d desc=%d rem=%d next=%d last=%d sz=%d",
num_desc, next, s_cur_transfer.size_remaining,
s_cur_transfer.next_desc, desc->last_descriptor, desc->buffer1_size);
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
esp_err_t ret = esp_cache_msync((void *)desc, sizeof(sdmmc_desc_t), ESP_CACHE_MSYNC_FLAG_DIR_C2M);
assert(ret == ESP_OK);/* ... */
#endif
}{...}
}{ ... }
static esp_err_t handle_idle_state_events(void)
{
/* ... */
sdmmc_event_t evt;
while (sdmmc_host_wait_for_event(0, &evt) == ESP_OK) {
if (evt.sdmmc_status & SDMMC_INTMASK_CD) {
ESP_LOGV(TAG, "card detect event");
evt.sdmmc_status &= ~SDMMC_INTMASK_CD;
}{...}
if (evt.sdmmc_status != 0 || evt.dma_status != 0) {
ESP_LOGE(TAG, "handle_idle_state_events unhandled: %08"PRIx32" %08"PRIx32,
evt.sdmmc_status, evt.dma_status);
}{...}
}{...}
return ESP_OK;
}{ ... }
static esp_err_t handle_event(int slot, sdmmc_command_t* cmd, sdmmc_req_state_t* state,
sdmmc_event_t* unhandled_events)
{
sdmmc_event_t event;
esp_err_t err = sdmmc_host_wait_for_event(cmd->timeout_ms / portTICK_PERIOD_MS, &event);
if (err != ESP_OK) {
ESP_LOGE(TAG, "sdmmc_host_wait_for_event returned 0x%x", err);
if (err == ESP_ERR_TIMEOUT) {
sdmmc_host_dma_stop();
}{...}
return err;
}{...}
ESP_LOGV(TAG, "sdmmc_handle_event: slot %d event %08"PRIx32" %08"PRIx32", unhandled %08"PRIx32" %08"PRIx32,
slot, event.sdmmc_status, event.dma_status,
unhandled_events->sdmmc_status, unhandled_events->dma_status);
event.sdmmc_status |= unhandled_events->sdmmc_status;
event.dma_status |= unhandled_events->dma_status;
process_events(slot, event, cmd, state, unhandled_events);
ESP_LOGV(TAG, "sdmmc_handle_event: slot %d events unhandled: %08"PRIx32" %08"PRIx32, slot, unhandled_events->sdmmc_status, unhandled_events->dma_status);
return ESP_OK;
}{ ... }
static bool cmd_needs_auto_stop(const sdmmc_command_t* cmd)
{
return cmd->datalen > 0 &&
(cmd->opcode == MMC_WRITE_BLOCK_MULTIPLE ||
cmd->opcode == MMC_READ_BLOCK_MULTIPLE ||
cmd->opcode == MMC_WRITE_DAT_UNTIL_STOP ||
cmd->opcode == MMC_READ_DAT_UNTIL_STOP);
}{ ... }
static sdmmc_hw_cmd_t make_hw_cmd(sdmmc_command_t* cmd)
{
sdmmc_hw_cmd_t res = { 0 };
res.cmd_index = cmd->opcode;
if (cmd->opcode == MMC_STOP_TRANSMISSION) {
res.stop_abort_cmd = 1;
}{...} else if (cmd->opcode == MMC_GO_IDLE_STATE) {
res.send_init = 1;
}{...} else if (cmd->opcode == SD_SWITCH_VOLTAGE) {
res.volt_switch = 1;
}{...} else {
res.wait_complete = 1;
}{...}
if (cmd->opcode == MMC_GO_IDLE_STATE) {
res.send_init = 1;
}{...}
if (cmd->flags & SCF_RSP_PRESENT) {
res.response_expect = 1;
if (cmd->flags & SCF_RSP_136) {
res.response_long = 1;
}{...}
}{...}
if (cmd->flags & SCF_RSP_CRC) {
res.check_response_crc = 1;
}{...}
if (cmd->data) {
res.data_expected = 1;
if ((cmd->flags & SCF_CMD_READ) == 0) {
res.rw = 1;
}{...}
assert(cmd->datalen % cmd->blklen == 0);
res.send_auto_stop = cmd_needs_auto_stop(cmd) ? 1 : 0;
}{...}
ESP_LOGV(TAG, "%s: opcode=%d, rexp=%d, crc=%d, auto_stop=%d", __func__,
res.cmd_index, res.response_expect, res.check_response_crc,
res.send_auto_stop);
return res;
}{ ... }
static void process_command_response(uint32_t status, sdmmc_command_t* cmd)
{
if (cmd->flags & SCF_RSP_PRESENT) {
if (cmd->flags & SCF_RSP_136) {
memcpy(cmd->response, (uint32_t*) SDMMC.resp, 4 * sizeof(uint32_t));
}{...} else {
cmd->response[0] = SDMMC.resp[0];
cmd->response[1] = 0;
cmd->response[2] = 0;
cmd->response[3] = 0;
}{...}
}{...}
esp_err_t err = ESP_OK;
if (status & SDMMC_INTMASK_RTO) {
assert(cmd->flags & SCF_RSP_PRESENT);
err = ESP_ERR_TIMEOUT;
}{...} else if ((cmd->flags & SCF_RSP_CRC) && (status & SDMMC_INTMASK_RCRC)) {
err = ESP_ERR_INVALID_CRC;
}{...} else if (status & SDMMC_INTMASK_RESP_ERR) {
err = ESP_ERR_INVALID_RESPONSE;
}{...}
if (err != ESP_OK) {
cmd->error = err;
if (cmd->data) {
sdmmc_host_dma_stop();
}{...}
ESP_LOGD(TAG, "%s: error 0x%x (status=%08"PRIx32")", __func__, err, status);
}{...}
}{ ... }
static void process_data_status(uint32_t status, sdmmc_command_t* cmd)
{
if (status & SDMMC_DATA_ERR_MASK) {
if (status & SDMMC_INTMASK_DTO) {
cmd->error = ESP_ERR_TIMEOUT;
}{...} else if (status & SDMMC_INTMASK_DCRC) {
cmd->error = ESP_ERR_INVALID_CRC;
}{...} else if ((status & SDMMC_INTMASK_EBE) &&
(cmd->flags & SCF_CMD_READ) == 0) {
cmd->error = ESP_ERR_TIMEOUT;
}{...} else {
cmd->error = ESP_FAIL;
}{...}
SDMMC.ctrl.fifo_reset = 1;
}{...}
if (cmd->error != 0) {
if (cmd->data) {
sdmmc_host_dma_stop();
}{...}
ESP_LOGD(TAG, "%s: error 0x%x (status=%08"PRIx32")", __func__, cmd->error, status);
}{...}
}{ ... }
static inline bool mask_check_and_clear(uint32_t* state, uint32_t mask)
{
bool ret = ((*state) & mask) != 0;
*state &= ~mask;
return ret;
}{ ... }
static esp_err_t process_events(int slot, sdmmc_event_t evt, sdmmc_command_t* cmd,
sdmmc_req_state_t* pstate, sdmmc_event_t* unhandled_events)
{
const char* const s_state_names[] __attribute__((unused)) = {
"IDLE",
"SENDING_CMD",
"SENDIND_DATA",
"BUSY",
"SENDING_VOLTAGE_SWITCH",
"WAITING_VOLTAGE_SWITCH",
}{...};
sdmmc_event_t orig_evt = evt;
ESP_LOGV(TAG, "%s: slot=%d state=%s evt=%"PRIx32" dma=%"PRIx32, __func__, slot,
s_state_names[*pstate], evt.sdmmc_status, evt.dma_status);
sdmmc_req_state_t next_state = *pstate;
sdmmc_req_state_t state = (sdmmc_req_state_t) -1;
while (next_state != state) {
state = next_state;
switch (state) {
case SDMMC_IDLE:
break;
...
case SDMMC_SENDING_CMD:
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_CMD_ERR_MASK)) {
process_command_response(orig_evt.sdmmc_status, cmd);
}{...}
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_CMD_DONE)) {
process_command_response(orig_evt.sdmmc_status, cmd);
if (cmd->error != ESP_OK) {
next_state = SDMMC_IDLE;
break;
}{...}
if (cmd->data == NULL) {
next_state = SDMMC_IDLE;
}{...} else {
next_state = SDMMC_SENDING_DATA;
}{...}
}{...}
break;
...
case SDMMC_SENDING_VOLTAGE_SWITCH:
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_CMD_ERR_MASK)) {
process_command_response(orig_evt.sdmmc_status, cmd);
next_state = SDMMC_IDLE;
}{...}
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_VOLT_SW)) {
handle_voltage_switch_stage2(slot, cmd);
if (cmd->error != ESP_OK) {
next_state = SDMMC_IDLE;
}{...} else {
next_state = SDMMC_WAITING_VOLTAGE_SWITCH;
}{...}
}{...}
break;
...
case SDMMC_WAITING_VOLTAGE_SWITCH:
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_CMD_ERR_MASK)) {
process_command_response(orig_evt.sdmmc_status, cmd);
next_state = SDMMC_IDLE;
}{...}
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_VOLT_SW)) {
handle_voltage_switch_stage3(slot, cmd);
next_state = SDMMC_IDLE;
}{...}
break;
...
case SDMMC_SENDING_DATA:
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_DATA_ERR_MASK)) {
process_data_status(orig_evt.sdmmc_status, cmd);
sdmmc_host_dma_stop();
}{...}
if (mask_check_and_clear(&evt.dma_status, SDMMC_DMA_DONE_MASK)) {
s_cur_transfer.desc_remaining--;
if (s_cur_transfer.size_remaining) {
int desc_to_fill = get_free_descriptors_count();
fill_dma_descriptors(desc_to_fill);
sdmmc_host_dma_resume();
}{...}
if (s_cur_transfer.desc_remaining == 0) {
next_state = SDMMC_BUSY;
}{...}
}{...}
if (orig_evt.sdmmc_status & (SDMMC_INTMASK_SBE | SDMMC_INTMASK_DATA_OVER)) {
next_state = SDMMC_IDLE;
break;
}{...}
break;
...
case SDMMC_BUSY:
if (!mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_DATA_OVER)) {
break;
}{...}
process_data_status(orig_evt.sdmmc_status, cmd);
next_state = SDMMC_IDLE;
break;...
}{...}
ESP_LOGV(TAG, "%s state=%s next_state=%s", __func__, s_state_names[state], s_state_names[next_state]);
}{...}
*pstate = state;
*unhandled_events = evt;
return ESP_OK;
}{ ... }
static bool wait_for_busy_cleared(uint32_t timeout_ms)
{
if (timeout_ms == 0) {
return !sdmmc_host_card_busy();
}{...}
/* ... */
uint32_t timeout_ticks = (timeout_ms + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS;
while (timeout_ticks-- > 0) {
if (!sdmmc_host_card_busy()) {
return true;
}{...}
vTaskDelay(1);
}{...}
return false;
}{ ... }
static void handle_voltage_switch_stage1(int slot, sdmmc_command_t* cmd)
{
ESP_LOGV(TAG, "%s: enabling clock", __func__);
sdmmc_host_set_cclk_always_on(slot, true);
}{ ... }
static void handle_voltage_switch_stage2(int slot, sdmmc_command_t* cmd)
{
ESP_LOGV(TAG, "%s: disabling clock", __func__);
sdmmc_host_enable_clk_cmd11(slot, false);
usleep(100);
ESP_LOGV(TAG, "%s: switching voltage", __func__);
esp_err_t err = cmd->volt_switch_cb(cmd->volt_switch_cb_arg, 1800);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to switch voltage (0x%x)", err);
cmd->error = err;
}{...}
ESP_LOGV(TAG, "%s: waiting 10ms", __func__);
usleep(10000);
ESP_LOGV(TAG, "%s: enabling clock", __func__);
sdmmc_host_enable_clk_cmd11(slot, true);
}{ ... }
static void handle_voltage_switch_stage3(int slot, sdmmc_command_t* cmd)
{
ESP_LOGV(TAG, "%s: voltage switch complete, clock back to low-power mode", __func__);
sdmmc_host_set_cclk_always_on(slot, false);
}{ ... }