1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
78
79
80
81
82
83
84
85
86
87
88
95
96
97
98
99
100
101
102
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
138
139
140
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
165
168
171
172
175
176
177
178
179
180
181
182
188
189
190
191
192
193
194
195
196
197
200
201
202
203
204
212
213
218
219
220
221
222
223
224
225
226
227
228
229
232
233
237
238
239
240
241
242
243
244
247
248
249
250
251
252
253
254
/* ... */
#include <tinycrypt/aes.h>
#include <tinycrypt/cmac_mode.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
const static uint64_t MAX_CALLS = ((uint64_t)1 << 48);
/* ... */
const unsigned char gf_wrap = 0x87;
/* ... */
void gf_double(uint8_t *out, uint8_t *in)
{
uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
out += (TC_AES_BLOCK_SIZE - 1);
for (;;) {
*out-- = (*x << 1) ^ carry;
if (x == in) {
break;
}{...}
carry = *x-- >> 7;
}{...}
}{ ... }
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
{
if (s == (TCCmacState_t) 0 ||
key == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}{...}
_set(s, 0, sizeof(*s));
s->sched = sched;
tc_aes128_set_encrypt_key(s->sched, key);
_set(s->iv, 0, TC_AES_BLOCK_SIZE);
tc_aes_encrypt(s->iv, s->iv, s->sched);
gf_double (s->K1, s->iv);
gf_double (s->K2, s->K1);
tc_cmac_init(s);
return TC_CRYPTO_SUCCESS;
}{ ... }
int tc_cmac_erase(TCCmacState_t s)
{
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}{...}
_set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS;
}{ ... }
int tc_cmac_init(TCCmacState_t s)
{
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}{...}
_set(s->iv, 0, TC_AES_BLOCK_SIZE);
_set(s->leftover, 0, TC_AES_BLOCK_SIZE);
s->leftover_offset = 0;
s->countdown = MAX_CALLS;
return TC_CRYPTO_SUCCESS;
}{ ... }
int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
{
unsigned int i;
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}{...}
if (data_length == 0) {
return TC_CRYPTO_SUCCESS;
}{...}
if (data == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}{...}
if (s->countdown == 0) {
return TC_CRYPTO_FAIL;
}{...}
s->countdown--;
if (s->leftover_offset > 0) {
size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;
if (data_length < remaining_space) {
_copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
s->leftover_offset += data_length;
return TC_CRYPTO_SUCCESS;
}{...}
_copy(&s->leftover[s->leftover_offset],
remaining_space,
data,
remaining_space);
data_length -= remaining_space;
data += remaining_space;
s->leftover_offset = 0;
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= s->leftover[i];
}{...}
tc_aes_encrypt(s->iv, s->iv, s->sched);
}{...}
while (data_length > TC_AES_BLOCK_SIZE) {
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= data[i];
}{...}
tc_aes_encrypt(s->iv, s->iv, s->sched);
data += TC_AES_BLOCK_SIZE;
data_length -= TC_AES_BLOCK_SIZE;
}{...}
if (data_length > 0) {
_copy(s->leftover, data_length, data, data_length);
s->leftover_offset = data_length;
}{...}
return TC_CRYPTO_SUCCESS;
}{ ... }
int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
{
uint8_t *k;
unsigned int i;
if (tag == (uint8_t *) 0 ||
s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}{...}
if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
k = (uint8_t *) s->K1;
}{...} else {
size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;
_set(&s->leftover[s->leftover_offset], 0, remaining);
s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
k = (uint8_t *) s->K2;
}{...}
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= s->leftover[i] ^ k[i];
}{...}
tc_aes_encrypt(tag, s->iv, s->sched);
tc_cmac_erase(s);
return TC_CRYPTO_SUCCESS;
}{ ... }