Select one of the symbols to view example projects that use it.
 
Outline
#include "common/bt_target.h"
#include "oi_codec_sbc_private.h"
#define DCTII_4_K06_FIX
#define DCTII_4_K08_FIX
#define DCTII_4_K09_FIX
#define DCTII_4_K10_FIX
#define SCALE
#define CLIP_INT16
#define MUL_16S_32S_HI
#define LONG_MULT_DCT
#define COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS
#define DCT2_8
#define SYNTH80
#define SYNTH112
Files
loading...
SourceVuESP-IDF Framework and ExamplesESP-IDFcomponents/bt/host/bluedroid/external/sbc/decoder/srce/synthesis-sbc.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/****************************************************************************** * * Copyright (C) 2014 The Android Open Source Project * Copyright 2003 - 2004 Open Interface North America, Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************//* ... */ /********************************************************************************** $Revision: #1 $ ***********************************************************************************//* ... */ /** @file This file, along with synthesis-generated.c, contains the synthesis filterbank routines. The operations performed correspond to the operations described in A2DP Appendix B, Figure 12.3. Several mathematical optimizations are performed, particularly for the 8-subband case. One important optimization is to note that the "matrixing" operation can be decomposed into the product of a type II discrete cosine kernel and another, sparse matrix. According to Fig 12.3, in the 8-subband case, @code N[k][i] = cos((i+0.5)*(k+4)*pi/8), k = 0..15 and i = 0..7 @endcode N can be factored as R * C2, where C2 is an 8-point type II discrete cosine kernel given by @code C2[k][i] = cos((i+0.5)*k*pi/8)), k = 0..7 and i = 0..7 @endcode R turns out to be a sparse 16x8 matrix with the following non-zero entries: @code R[k][k+4] = 1, k = 0..3 R[k][abs(12-k)] = -1, k = 5..15 @endcode The spec describes computing V[0..15] as N * R. @code V[0..15] = N * R = (R * C2) * R = R * (C2 * R) @endcode C2 * R corresponds to computing the discrete cosine transform of R, so V[0..15] can be computed by taking the DCT of R followed by assignment and selective negation of the DCT result into V. Although this was derived empirically using GNU Octave, it is formally demonstrated in, e.g., Liu, Chi-Min and Lee, Wen-Chieh. "A Unified Fast Algorithm for Cosine Modulated Filter Banks in Current Audio Coding Standards." Journal of the AES 47 (December 1999): 1061. Given the shift operation performed prior to computing V[0..15], it is clear that V[0..159] represents a rolling history of the 10 most recent groups of blocks input to the synthesis operation. Interpreting the matrix N in light of its factorization into C2 and R, R's sparseness has implications for interpreting the values in V. In particular, there is considerable redundancy in the values stored in V. Furthermore, since R[4][0..7] are all zeros, one out of every 16 values in V will be zero regardless of the input data. Within each block of 16 values in V, fully half of them are redundant or irrelevant: @code V[ 0] = DCT[4] V[ 1] = DCT[5] V[ 2] = DCT[6] V[ 3] = DCT[7] V[ 4] = 0 V[ 5] = -DCT[7] = -V[3] (redundant) V[ 6] = -DCT[6] = -V[2] (redundant) V[ 7] = -DCT[5] = -V[1] (redundant) V[ 8] = -DCT[4] = -V[0] (redundant) V[ 9] = -DCT[3] V[10] = -DCT[2] V[11] = -DCT[1] V[12] = -DCT[0] V[13] = -DCT[1] = V[11] (redundant) V[14] = -DCT[2] = V[10] (redundant) V[15] = -DCT[3] = V[ 9] (redundant) @endcode Since the elements of V beyond 15 were originally computed the same way during a previous run, what holds true for V[x] also holds true for V[x+16]. Thus, so long as care is taken to maintain the mapping, we need only actually store the unique values, which correspond to the output of the DCT, in some cases inverted. In fact, instead of storing V[0..159], we could store DCT[0..79] which would contain a history of DCT results. More on this in a bit. Going back to figure 12.3 in the spec, it should be clear that the vector U need not actually be explicitly constructed, but that with suitable indexing into V during the window operation, the same end can be accomplished. In the same spirit of the pseudocode shown in the figure, the following is the construction of W without using U: @code for i=0 to 79 do W[i] = D[i]*VSIGN(i)*V[remap_V(i)] where remap_V(i) = 32*(int(i/16)) + (i % 16) + (i % 16 >= 8 ? 16 : 0) and VSIGN(i) maps i%16 into {1, 1, 1, 1, 0, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1 } These values correspond to the signs of the redundant values as shown in the explanation three paragraphs above. @endcode We saw above how V[4..8,13..15] (and by extension V[(4..8,13..15)+16*n]) can be defined in terms of other elements within the subblock of V. V[0..3,9..12] correspond to DCT elements. @code for i=0 to 79 do W[i] = D[i]*DSIGN(i)*DCT[remap_DCT(i)] @endcode The DCT is calculated using the Arai-Agui-Nakajima factorization, which saves some computation by producing output that needs to be multiplied by scaling factors before being used. @code for i=0 to 79 do W[i] = D[i]*SCALE[i%8]*AAN_DCT[remap_DCT(i)] @endcode D can be premultiplied with the DCT scaling factors to yield @code for i=0 to 79 do W[i] = DSCALED[i]*AAN_DCT[remap_DCT(i)] where DSCALED[i] = D[i]*SCALE[i%8] @endcode The output samples X[0..7] are defined as sums of W: @code X[j] = sum{i=0..9}(W[j+8*i]) @endcode @ingroup codec_internal *//* ... */ /** @addtogroup codec_internal @{ *//* ... */ #include "common/bt_target.h" #include "oi_codec_sbc_private.h" #if (defined(SBC_DEC_INCLUDED) && SBC_DEC_INCLUDED == TRUE) const OI_INT32 dec_window_4[21] = { 0, /* +0.00000000E+00 */ 97, /* +5.36548976E-04 */ 270, /* +1.49188357E-03 */ 495, /* +2.73370904E-03 */ 694, /* +3.83720193E-03 */ 704, /* +3.89205149E-03 */ 338, /* +1.86581691E-03 */ -554, /* -3.06012286E-03 */ 1974, /* +1.09137620E-02 */ 3697, /* +2.04385087E-02 */ 5224, /* +2.88757392E-02 */ 5824, /* +3.21939290E-02 */ 4681, /* +2.58767811E-02 */ 1109, /* +6.13245186E-03 */ -5214, /* -2.88217274E-02 */ -14047, /* -7.76463494E-02 */ 24529, /* +1.35593274E-01 */ 35274, /* +1.94987841E-01 */ 44618, /* +2.46636662E-01 */ 50984, /* +2.81828203E-01 */ 53243, /* +2.94315332E-01 */ }{...}; #define DCTII_4_K06_FIX ( 11585)/* S1.14 11585 0.707107*/ #define DCTII_4_K08_FIX ( 21407)/* S1.14 21407 1.306563*/ #define DCTII_4_K09_FIX (-15137)/* S1.14 -15137 -0.923880*/ #define DCTII_4_K10_FIX ( -8867)/* S1.14 -8867 -0.541196*/ /** Scales x by y bits to the right, adding a rounding factor. *//* ... */ #ifndef SCALE #define SCALE(x, y) (((x) + (1 <<((y)-1))) >> (y)) #endif #ifndef CLIP_INT16 #define CLIP_INT16(x) do { if (x > OI_INT16_MAX) { x = OI_INT16_MAX; } else if (x < OI_INT16_MIN) { x = OI_INT16_MIN; } } while (0) #endif /** * Default C language implementation of a 16x32->32 multiply. This function may * be replaced by a platform-specific version for speed. * * @param u A signed 16-bit multiplicand * @param v A signed 32-bit multiplier * @return A signed 32-bit value corresponding to the 32 most significant bits * of the 48-bit product of u and v. *//* ... */ static INLINE OI_INT32 default_mul_16s_32s_hi(OI_INT16 u, OI_INT32 v) { OI_UINT16 v0; OI_INT16 v1; OI_INT32 w, x; v0 = (OI_UINT16)(v & 0xffff); v1 = (OI_INT16) (v >> 16); w = v1 * u; x = u * v0; return w + (x >> 16); }{...} #define MUL_16S_32S_HI(_x, _y) default_mul_16s_32s_hi(_x, _y) #define LONG_MULT_DCT(K, sample) (MUL_16S_32S_HI(K, sample)<<2) PRIVATE void SynthWindow80_generated(OI_INT16 *pcm, SBC_BUFFER_T const *RESTRICT buffer, OI_UINT strideShift); PRIVATE void SynthWindow112_generated(OI_INT16 *pcm, SBC_BUFFER_T const *RESTRICT buffer, OI_UINT strideShift); PRIVATE void dct2_8(SBC_BUFFER_T *RESTRICT out, OI_INT32 const *RESTRICT x); typedef void (*SYNTH_FRAME)(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount); #ifndef COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS #define COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(dest, src) do { shift_buffer(dest, src, 72); } while (0) #endif #ifndef DCT2_8 #define DCT2_8(dst, src) dct2_8(dst, src) #endif #ifndef SYNTH80 #define SYNTH80 SynthWindow80_generated #endif #ifndef SYNTH112 #define SYNTH112 SynthWindow112_generated #endif PRIVATE void OI_SBC_SynthFrame_80(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount) { OI_UINT blk; OI_UINT ch; OI_UINT nrof_channels = context->common.frameInfo.nrof_channels; OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1; OI_UINT offset = context->common.filterBufferOffset; OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart; OI_UINT blkstop = blkstart + blkcount; for (blk = blkstart; blk < blkstop; blk++) { if (offset == 0) { COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[0] + context->common.filterBufferLen - 72, context->common.filterBuffer[0]); if (nrof_channels == 2) { COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 72, context->common.filterBuffer[1]); }{...} offset = context->common.filterBufferLen - 80; }{...} else { offset -= 1 * 8; }{...} for (ch = 0; ch < nrof_channels; ch++) { DCT2_8(context->common.filterBuffer[ch] + offset, s); SYNTH80(pcm + ch, context->common.filterBuffer[ch] + offset, pcmStrideShift); s += 8; }{...} pcm += (8 << pcmStrideShift); }{...} context->common.filterBufferOffset = offset; }{...} PRIVATE void OI_SBC_SynthFrame_4SB(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount) { OI_UINT blk; OI_UINT ch; OI_UINT nrof_channels = context->common.frameInfo.nrof_channels; OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1; OI_UINT offset = context->common.filterBufferOffset; OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart; OI_UINT blkstop = blkstart + blkcount; for (blk = blkstart; blk < blkstop; blk++) { if (offset == 0) { COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[0] + context->common.filterBufferLen - 72, context->common.filterBuffer[0]); if (nrof_channels == 2) { COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 72, context->common.filterBuffer[1]); }{...} offset = context->common.filterBufferLen - 80; }{...} else { offset -= 8; }{...} for (ch = 0; ch < nrof_channels; ch++) { cosineModulateSynth4(context->common.filterBuffer[ch] + offset, s); SynthWindow40_int32_int32_symmetry_with_sum(pcm + ch, context->common.filterBuffer[ch] + offset, pcmStrideShift); s += 4; }{...} pcm += (4 << pcmStrideShift); }{...} context->common.filterBufferOffset = offset; }{...} #ifdef SBC_ENHANCED PRIVATE void OI_SBC_SynthFrame_Enhanced(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount) { OI_UINT blk; OI_UINT ch; OI_UINT nrof_channels = context->common.frameInfo.nrof_channels; OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1; OI_UINT offset = context->common.filterBufferOffset; OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart; OI_UINT blkstop = blkstart + blkcount; for (blk = blkstart; blk < blkstop; blk++) { if (offset == 0) { COPY_BACKWARD_32BIT_ALIGNED_104_HALFWORDS(context->common.filterBuffer[0] + context->common.filterBufferLen - 104, context->common.filterBuffer[0]); if (nrof_channels == 2) { COPY_BACKWARD_32BIT_ALIGNED_104_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 104, context->common.filterBuffer[1]); }{...} offset = context->common.filterBufferLen - 112; }{...} else { offset -= 8; }{...} for (ch = 0; ch < nrof_channels; ++ch) { DCT2_8(context->common.filterBuffer[ch] + offset, s); SYNTH112(pcm + ch, context->common.filterBuffer[ch] + offset, pcmStrideShift); s += 8; }{...} pcm += (8 << pcmStrideShift); }{...} context->common.filterBufferOffset = offset; }{...} static const SYNTH_FRAME SynthFrameEnhanced[] = { NULL, /* invalid */ OI_SBC_SynthFrame_Enhanced, /* mono */ OI_SBC_SynthFrame_Enhanced /* stereo */ }{...}; /* ... */ #endif static const SYNTH_FRAME SynthFrame8SB[] = { NULL, /* invalid */ OI_SBC_SynthFrame_80, /* mono */ OI_SBC_SynthFrame_80 /* stereo */ }{...}; static const SYNTH_FRAME SynthFrame4SB[] = { NULL, /* invalid */ OI_SBC_SynthFrame_4SB, /* mono */ OI_SBC_SynthFrame_4SB /* stereo */ }{...}; PRIVATE void OI_SBC_SynthFrame(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT start_block, OI_UINT nrof_blocks) { OI_UINT nrof_subbands = context->common.frameInfo.nrof_subbands; OI_UINT nrof_channels = context->common.frameInfo.nrof_channels; OI_ASSERT(nrof_subbands == 4 || nrof_subbands == 8); if (nrof_subbands == 4) { SynthFrame4SB[nrof_channels](context, pcm, start_block, nrof_blocks); #ifdef SBC_ENHANCED }{...} else if (context->common.frameInfo.enhanced) { SynthFrameEnhanced[nrof_channels](context, pcm, start_block, nrof_blocks); #endif /* SBC_ENHANCED */ }{...} else { SynthFrame8SB[nrof_channels](context, pcm, start_block, nrof_blocks); }{...} }{...} void SynthWindow40_int32_int32_symmetry_with_sum(OI_INT16 *pcm, SBC_BUFFER_T buffer[80], OI_UINT strideShift) { OI_INT32 pa; OI_INT32 pb; /* These values should be zero, since out[2] of the 4-band cosine modulation * is always zero. *//* ... */ OI_ASSERT(buffer[ 2] == 0); OI_ASSERT(buffer[10] == 0); OI_ASSERT(buffer[18] == 0); OI_ASSERT(buffer[26] == 0); OI_ASSERT(buffer[34] == 0); OI_ASSERT(buffer[42] == 0); OI_ASSERT(buffer[50] == 0); OI_ASSERT(buffer[58] == 0); OI_ASSERT(buffer[66] == 0); OI_ASSERT(buffer[74] == 0); pa = dec_window_4[ 4] * (buffer[12] + buffer[76]); pa += dec_window_4[ 8] * (buffer[16] - buffer[64]); pa += dec_window_4[12] * (buffer[28] + buffer[60]); pa += dec_window_4[16] * (buffer[32] - buffer[48]); pa += dec_window_4[20] * buffer[44]; pa = SCALE(-pa, 15); CLIP_INT16(pa); pcm[0 << strideShift] = (OI_INT16)pa; pa = dec_window_4[ 1] * buffer[ 1]; pb = dec_window_4[ 1] * buffer[79]; pb += dec_window_4[ 3] * buffer[ 3]; pa += dec_window_4[ 3] * buffer[77]; pa += dec_window_4[ 5] * buffer[13]; pb += dec_window_4[ 5] * buffer[67]; pb += dec_window_4[ 7] * buffer[15]; pa += dec_window_4[ 7] * buffer[65]; pa += dec_window_4[ 9] * buffer[17]; pb += dec_window_4[ 9] * buffer[63]; pb += dec_window_4[11] * buffer[19]; pa += dec_window_4[11] * buffer[61]; pa += dec_window_4[13] * buffer[29]; pb += dec_window_4[13] * buffer[51]; pb += dec_window_4[15] * buffer[31]; pa += dec_window_4[15] * buffer[49]; pa += dec_window_4[17] * buffer[33]; pb += dec_window_4[17] * buffer[47]; pb += dec_window_4[19] * buffer[35]; pa += dec_window_4[19] * buffer[45]; pa = SCALE(-pa, 15); CLIP_INT16(pa); pcm[1 << strideShift] = (OI_INT16)(pa); pb = SCALE(-pb, 15); CLIP_INT16(pb); pcm[3 << strideShift] = (OI_INT16)(pb); pa = dec_window_4[2] * (/*buffer[ 2] + */ buffer[78]); /* buffer[ 2] is always zero */ pa += dec_window_4[6] * (buffer[14] /* + buffer[66]*/); /* buffer[66] is always zero */ pa += dec_window_4[10] * (/*buffer[18] + */ buffer[62]); /* buffer[18] is always zero */ pa += dec_window_4[14] * (buffer[30] /* + buffer[50]*/); /* buffer[50] is always zero */ pa += dec_window_4[18] * (/*buffer[34] + */ buffer[46]); /* buffer[34] is always zero */ pa = SCALE(-pa, 15); CLIP_INT16(pa); pcm[2 << strideShift] = (OI_INT16)(pa); }{...} /** This routine implements the cosine modulation matrix for 4-subband synthesis. This is called "matrixing" in the SBC specification. This matrix, M4, can be factored into an 8-point Type II Discrete Cosine Transform, DCTII_4 and a matrix S4, given here: @code __ __ | 0 0 1 0 | | 0 0 0 1 | | 0 0 0 0 | | 0 0 0 -1 | S4 = | 0 0 -1 0 | | 0 -1 0 0 | | -1 0 0 0 | |__ 0 -1 0 0 __| M4 * in = S4 * (DCTII_4 * in) @endcode (DCTII_4 * in) is computed using a Fast Cosine Transform. The algorithm here is based on an implementation computed by the SPIRAL computer algebra system, manually converted to fixed-point arithmetic. S4 can be implemented using only assignment and negation. *//* ... */ PRIVATE void cosineModulateSynth4(SBC_BUFFER_T *RESTRICT out, OI_INT32 const *RESTRICT in) { OI_INT32 f0, f1, f2, f3, f4, f7, f8, f9, f10; OI_INT32 y0, y1, y2, y3; f0 = (in[0] - in[3]); f1 = (in[0] + in[3]); f2 = (in[1] - in[2]); f3 = (in[1] + in[2]); f4 = f1 - f3; y0 = -SCALE(f1 + f3, DCT_SHIFT); y2 = -SCALE(LONG_MULT_DCT(DCTII_4_K06_FIX, f4), DCT_SHIFT); f7 = f0 + f2; f8 = LONG_MULT_DCT(DCTII_4_K08_FIX, f0); f9 = LONG_MULT_DCT(DCTII_4_K09_FIX, f7); f10 = LONG_MULT_DCT(DCTII_4_K10_FIX, f2); y3 = -SCALE(f8 + f9, DCT_SHIFT); y1 = -SCALE(f10 - f9, DCT_SHIFT); out[0] = (OI_INT16) - y2; out[1] = (OI_INT16) - y3; out[2] = (OI_INT16)0; out[3] = (OI_INT16)y3; out[4] = (OI_INT16)y2; out[5] = (OI_INT16)y1; out[6] = (OI_INT16)y0; out[7] = (OI_INT16)y1; }{...} /** @} *//* ... */ /* ... */#endif /* #if (defined(SBC_DEC_INCLUDED) && SBC_DEC_INCLUDED == TRUE) */
Details
Show:
from
Types: Columns:
This file uses the notable symbols shown below. Click anywhere in the file to view more details.