1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
20
21
22
23
24
25
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
71
72
77
78
79
80
81
82
83
84
85
86
87
91
92
93
94
95
96
97
98
99
104
105
106
107
108
109
116
117
118
132
133
134
135
136
137
138
139
140
141
142
143
144
145
148
149
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
175
176
177
185
186
204
205
212
216
217
218
219
220
221
222
223
224
225
226
227
232
236
237
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
278
283
284
285
293
309
310
317
318
319
320
321
322
323
324
325
326
327
328
332
333
356
357
358
359
360
363
364
365
366
370
371
372
373
374
378
379
380
381
382
383
384
385
386
387
388
389
393
394
395
396
400
401
404
405
409
432
433
434
435
436
437
441
442
443
444
445
446
447
448
449
450
451
452
453
456
457
462
463
464
465
466
467
468
469
470
471
476
477
482
483
484
485
486
491
492
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
515
516
520
521
522
523
524
525
526
527
528
529
530
534
535
539
540
542
548
549
550
551
552
556
557
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
581
582
583
586
587
591
592
597
601
602
607
608
609
613
621
622
623
624
625
626
627
628
629
630
631
632
633
638
639
642
643
647
648
653
657
662
663
664
668
677
678
679
680
681
682
683
684
685
686
687
688
689
690
694
695
699
700
708
731
732
733
740
741
742
743
744
745
746
750
751
752
753
757
758
759
760
761
762
763
764
765
766
767
768
769
770
774
775
776
780
781
782
783
784
788
789
797
820
821
822
829
830
831
832
833
834
838
839
840
841
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
900
901
926
927
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
955
956
957
958
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1055
1056
1057
1058
1059
1060
1061
1062
1063
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1130
1150
1151
1152
1153
1154
1155
1156
1160
1161
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1189
1190
1195
1196
1197
1198
1202
1203
1207
1208
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1244
1245
1246
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1271
1272
1273
1274
1275
1276
1277
1278
1284
1285
1290
1291
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1358
1359
1360
1366
1367
1368
1369
1379
1380
1381
1382
1383
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1401
1402
1403
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
/* ... */
/* ... */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/log.h>
#include "target.h"
#include "target_type.h"
#include "register.h"
#include "breakpoints.h"
#include "x86_32_common.h"
6 includes
static int set_debug_regs(struct target *t, uint32_t address,
uint8_t bp_num, uint8_t bp_type, uint8_t bp_length);
static int unset_debug_regs(struct target *t, uint8_t bp_num);
static int read_mem(struct target *t, uint32_t size,
uint32_t addr, uint8_t *buf);
static int write_mem(struct target *t, uint32_t size,
uint32_t addr, const uint8_t *buf);
static int calcaddr_physfromlin(struct target *t, target_addr_t addr,
target_addr_t *physaddr);
static int read_phys_mem(struct target *t, uint32_t phys_address,
uint32_t size, uint32_t count, uint8_t *buffer);
static int write_phys_mem(struct target *t, uint32_t phys_address,
uint32_t size, uint32_t count, const uint8_t *buffer);
static int set_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int unset_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int set_watchpoint(struct target *target,
struct watchpoint *watchpoint);
static int unset_watchpoint(struct target *target,
struct watchpoint *watchpoint);
static int read_hw_reg_to_cache(struct target *t, int num);
static int write_hw_reg_from_cache(struct target *t, int num);
int x86_32_get_gdb_reg_list(struct target *t,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
int i;
*reg_list_size = x86_32->cache->num_regs;
LOG_DEBUG("num_regs=%d, reg_class=%d", (*reg_list_size), reg_class);
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
if (!*reg_list) {
LOG_ERROR("%s out of memory", __func__);
return ERROR_FAIL;
}if (!*reg_list) { ... }
for (i = 0; i < (*reg_list_size); i++) {
(*reg_list)[i] = &x86_32->cache->reg_list[i];
LOG_DEBUG("value %s = %08" PRIx32, x86_32->cache->reg_list[i].name,
buf_get_u32(x86_32->cache->reg_list[i].value, 0, 32));
}for (i = 0; i < (*reg_list_size); i++) { ... }
return ERROR_OK;
}{ ... }
int x86_32_common_init_arch_info(struct target *t, struct x86_32_common *x86_32)
{
t->arch_info = x86_32;
x86_32->common_magic = X86_32_COMMON_MAGIC;
x86_32->num_hw_bpoints = MAX_DEBUG_REGS;
x86_32->hw_break_list = calloc(x86_32->num_hw_bpoints,
sizeof(struct x86_32_dbg_reg));
if (!x86_32->hw_break_list) {
LOG_ERROR("%s out of memory", __func__);
return ERROR_FAIL;
}if (!x86_32->hw_break_list) { ... }
x86_32->curr_tap = t->tap;
x86_32->fast_data_area = NULL;
x86_32->flush = 1;
x86_32->read_hw_reg_to_cache = read_hw_reg_to_cache;
x86_32->write_hw_reg_from_cache = write_hw_reg_from_cache;
return ERROR_OK;
}{ ... }
int x86_32_common_mmu(struct target *t, int *enabled)
{
*enabled = true;
return ERROR_OK;
}{ ... }
int x86_32_common_virt2phys(struct target *t, target_addr_t address, target_addr_t *physical)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
/* ... */
uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
if (!(cr0 & CR0_PG)) {
uint32_t dsb = buf_get_u32(x86_32->cache->reg_list[DSB].value, 0, 32);
*physical = dsb + address;
}if (!(cr0 & CR0_PG)) { ... } else {
if (calcaddr_physfromlin(t, address, physical) != ERROR_OK) {
LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
__func__, address);
return ERROR_FAIL;
}if (calcaddr_physfromlin(t, address, physical) != ERROR_OK) { ... }
}else { ... }
return ERROR_OK;
}{ ... }
int x86_32_common_read_phys_mem(struct target *t, target_addr_t phys_address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
int error;
error = read_phys_mem(t, phys_address, size, count, buffer);
if (error != ERROR_OK)
return error;
/* ... */
struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
while (iter) {
if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) {
uint32_t offset = iter->physaddr - phys_address;
buffer[offset] = iter->orig_byte;
}if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) { ... }
iter = iter->next;
}while (iter) { ... }
return ERROR_OK;
}{ ... }
static int read_phys_mem(struct target *t, uint32_t phys_address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int retval = ERROR_OK;
bool pg_disabled = false;
LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
phys_address, size, count, buffer);
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if (!count || !buffer || !phys_address) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=0x%08" PRIx32,
__func__, count, buffer, phys_address);
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (!count || !buffer || !phys_address) { ... }
if (x86_32->is_paging_enabled(t)) {
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
pg_disabled = true;
}if (x86_32->is_paging_enabled(t)) { ... }
for (uint32_t i = 0; i < count; i++) {
switch (size) {
case BYTE:
retval = read_mem(t, size, phys_address + i, buffer + i);
break;case BYTE:
case WORD:
retval = read_mem(t, size, phys_address + i * 2, buffer + i * 2);
break;case WORD:
case DWORD:
retval = read_mem(t, size, phys_address + i * 4, buffer + i * 4);
break;case DWORD:
default:
LOG_ERROR("%s invalid read size", __func__);
break;default
}switch (size) { ... }
if (retval != ERROR_OK)
break;
}for (uint32_t i = 0; i < count; i++) { ... }
if (pg_disabled) {
int retval2 = x86_32->enable_paging(t);
if (retval2 != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval2;
}if (retval2 != ERROR_OK) { ... }
}if (pg_disabled) { ... }
/* ... */
return retval;
}{ ... }
int x86_32_common_write_phys_mem(struct target *t, target_addr_t phys_address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
int error = ERROR_OK;
uint8_t *newbuffer = NULL;
check_not_halted(t);
if (!count || !buffer || !phys_address) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
__func__, count, buffer, phys_address);
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (!count || !buffer || !phys_address) { ... }
/* ... */
newbuffer = malloc(size*count);
if (!newbuffer) {
LOG_ERROR("%s out of memory", __func__);
return ERROR_FAIL;
}if (!newbuffer) { ... }
memcpy(newbuffer, buffer, size*count);
struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
while (iter) {
if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) {
uint32_t offset = iter->physaddr - phys_address;
newbuffer[offset] = SW_BP_OPCODE;
struct breakpoint *pbiter = t->breakpoints;
while (pbiter && pbiter->unique_id != iter->swbp_unique_id)
pbiter = pbiter->next;
if (pbiter)
pbiter->orig_instr[0] = buffer[offset];
}if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) { ... }
iter = iter->next;
}while (iter) { ... }
error = write_phys_mem(t, phys_address, size, count, newbuffer);
free(newbuffer);
return error;
}{ ... }
static int write_phys_mem(struct target *t, uint32_t phys_address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
int retval = ERROR_OK;
bool pg_disabled = false;
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
phys_address, size, count, buffer);
check_not_halted(t);
if (!count || !buffer || !phys_address) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=0x%08" PRIx32,
__func__, count, buffer, phys_address);
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (!count || !buffer || !phys_address) { ... }
/* ... */
if (x86_32->is_paging_enabled(t)) {
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
pg_disabled = true;
}if (x86_32->is_paging_enabled(t)) { ... }
for (uint32_t i = 0; i < count; i++) {
switch (size) {
case BYTE:
retval = write_mem(t, size, phys_address + i, buffer + i);
break;case BYTE:
case WORD:
retval = write_mem(t, size, phys_address + i * 2, buffer + i * 2);
break;case WORD:
case DWORD:
retval = write_mem(t, size, phys_address + i * 4, buffer + i * 4);
break;case DWORD:
default:
LOG_DEBUG("invalid read size");
break;default
}switch (size) { ... }
}for (uint32_t i = 0; i < count; i++) { ... }
if (pg_disabled) {
retval = x86_32->enable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
}if (pg_disabled) { ... }
return retval;
}{ ... }
static int read_mem(struct target *t, uint32_t size,
uint32_t addr, uint8_t *buf)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
int retval = x86_32->write_hw_reg(t, EAX, addr, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error write EAX", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
switch (size) {
case BYTE:
if (use32)
retval = x86_32->submit_instruction(t, MEMRDB32);
else
retval = x86_32->submit_instruction(t, MEMRDB16);
break;case BYTE:
case WORD:
if (use32)
retval = x86_32->submit_instruction(t, MEMRDH32);
else
retval = x86_32->submit_instruction(t, MEMRDH16);
break;case WORD:
case DWORD:
if (use32)
retval = x86_32->submit_instruction(t, MEMRDW32);
else
retval = x86_32->submit_instruction(t, MEMRDW16);
break;case DWORD:
default:
LOG_ERROR("%s invalid read mem size", __func__);
break;default
}switch (size) { ... }
if (retval != ERROR_OK)
return retval;
/* ... */
uint32_t regval;
retval = x86_32->read_hw_reg(t, EDX, ®val, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error read EDX", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
for (uint8_t i = 0; i < size; i++)
buf[i] = (regval >> (i*8)) & 0x000000FF;
retval = x86_32->transaction_status(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on mem read", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
return retval;
}{ ... }
static int write_mem(struct target *t, uint32_t size,
uint32_t addr, const uint8_t *buf)
{
uint32_t i = 0;
uint32_t buf4bytes = 0;
int retval = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
for (i = 0; i < size; ++i) {
buf4bytes = buf4bytes << 8;
buf4bytes += buf[(size-1)-i];
}for (i = 0; i < size; ++i) { ... }
bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
retval = x86_32->write_hw_reg(t, EAX, addr, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error write EAX", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
/* ... */
retval = x86_32->write_hw_reg(t, EDX, buf4bytes, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error write EDX", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
switch (size) {
case BYTE:
if (use32)
retval = x86_32->submit_instruction(t, MEMWRB32);
else
retval = x86_32->submit_instruction(t, MEMWRB16);
break;case BYTE:
case WORD:
if (use32)
retval = x86_32->submit_instruction(t, MEMWRH32);
else
retval = x86_32->submit_instruction(t, MEMWRH16);
break;case WORD:
case DWORD:
if (use32)
retval = x86_32->submit_instruction(t, MEMWRW32);
else
retval = x86_32->submit_instruction(t, MEMWRW16);
break;case DWORD:
default:
LOG_ERROR("%s invalid write mem size", __func__);
return ERROR_FAIL;default
}switch (size) { ... }
if (retval != ERROR_OK)
return retval;
retval = x86_32->transaction_status(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on mem write", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
return retval;
}{ ... }
int calcaddr_physfromlin(struct target *t, target_addr_t addr, target_addr_t *physaddr)
{
uint8_t entry_buffer[8];
if (!physaddr || !t)
return ERROR_FAIL;
struct x86_32_common *x86_32 = target_to_x86_32(t);
/* ... */
uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
if (!(cr0 & CR0_PG)) {
*physaddr = addr;
return ERROR_OK;
}if (!(cr0 & CR0_PG)) { ... }
uint32_t cr4 = buf_get_u32(x86_32->cache->reg_list[CR4].value, 0, 32);
bool is_pae = cr4 & 0x00000020;
uint32_t cr3 = buf_get_u32(x86_32->cache->reg_list[CR3].value, 0, 32);
if (is_pae) {
uint32_t pdpt_base = cr3 & 0xFFFFF000;
uint32_t pdpt_index = (addr & 0xC0000000) >> 30;
uint32_t pdpt_addr = pdpt_base + (8 * pdpt_index);
if (x86_32_common_read_phys_mem(t, pdpt_addr, 4, 2, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page directory pointer table entry at 0x%08" PRIx32,
__func__, pdpt_addr);
return ERROR_FAIL;
}if (x86_32_common_read_phys_mem(t, pdpt_addr, 4, 2, entry_buffer) != ERROR_OK) { ... }
uint64_t pdpt_entry = target_buffer_get_u64(t, entry_buffer);
if (!(pdpt_entry & 0x0000000000000001)) {
LOG_ERROR("%s page directory pointer table entry at 0x%08" PRIx32 " is not present",
__func__, pdpt_addr);
return ERROR_FAIL;
}if (!(pdpt_entry & 0x0000000000000001)) { ... }
uint32_t pd_base = pdpt_entry & 0xFFFFF000;
uint32_t pd_index = (addr & 0x3FE00000) >> 21;
uint32_t pd_addr = pd_base + (8 * pd_index);
if (x86_32_common_read_phys_mem(t, pd_addr, 4, 2, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page directory entry at 0x%08" PRIx32,
__func__, pd_addr);
return ERROR_FAIL;
}if (x86_32_common_read_phys_mem(t, pd_addr, 4, 2, entry_buffer) != ERROR_OK) { ... }
uint64_t pd_entry = target_buffer_get_u64(t, entry_buffer);
if (!(pd_entry & 0x0000000000000001)) {
LOG_ERROR("%s page directory entry at 0x%08" PRIx32 " is not present",
__func__, pd_addr);
return ERROR_FAIL;
}if (!(pd_entry & 0x0000000000000001)) { ... }
if (pd_entry & 0x0000000000000080) {
uint32_t page_base = (uint32_t)(pd_entry & 0x00000000FFE00000);
uint32_t offset = addr & 0x001FFFFF;
*physaddr = page_base + offset;
return ERROR_OK;
}if (pd_entry & 0x0000000000000080) { ... } else {
uint32_t pt_base = (uint32_t)(pd_entry & 0x00000000FFFFF000);
uint32_t pt_index = (addr & 0x001FF000) >> 12;
uint32_t pt_addr = pt_base + (8 * pt_index);
if (x86_32_common_read_phys_mem(t, pt_addr, 4, 2, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page table entry at 0x%08" PRIx32, __func__, pt_addr);
return ERROR_FAIL;
}if (x86_32_common_read_phys_mem(t, pt_addr, 4, 2, entry_buffer) != ERROR_OK) { ... }
uint64_t pt_entry = target_buffer_get_u64(t, entry_buffer);
if (!(pt_entry & 0x0000000000000001)) {
LOG_ERROR("%s page table entry at 0x%08" PRIx32 " is not present", __func__, pt_addr);
return ERROR_FAIL;
}if (!(pt_entry & 0x0000000000000001)) { ... }
uint32_t page_base = (uint32_t)(pt_entry & 0x00000000FFFFF000);
uint32_t offset = addr & 0x00000FFF;
*physaddr = page_base + offset;
return ERROR_OK;
}else { ... }
}if (is_pae) { ... } else {
uint32_t pd_base = cr3 & 0xFFFFF000;
uint32_t pd_index = (addr & 0xFFC00000) >> 22;
uint32_t pd_addr = pd_base + (4 * pd_index);
if (x86_32_common_read_phys_mem(t, pd_addr, 4, 1, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page directory entry at 0x%08" PRIx32, __func__, pd_addr);
return ERROR_FAIL;
}if (x86_32_common_read_phys_mem(t, pd_addr, 4, 1, entry_buffer) != ERROR_OK) { ... }
uint32_t pd_entry = target_buffer_get_u32(t, entry_buffer);
if (!(pd_entry & 0x00000001)) {
LOG_ERROR("%s page directory entry at 0x%08" PRIx32 " is not present", __func__, pd_addr);
return ERROR_FAIL;
}if (!(pd_entry & 0x00000001)) { ... }
/* ... */
if (pd_entry & 0x00000080) {
uint32_t page_base = pd_entry & 0xFFC00000;
*physaddr = page_base + (addr & 0x003FFFFF);
}if (pd_entry & 0x00000080) { ... } else {
uint32_t pt_base = pd_entry & 0xFFFFF000;
uint32_t pt_index = (addr & 0x003FF000) >> 12;
uint32_t pt_addr = pt_base + (4 * pt_index);
if (x86_32_common_read_phys_mem(t, pt_addr, 4, 1, entry_buffer) != ERROR_OK) {
LOG_ERROR("%s couldn't read page table entry at 0x%08" PRIx32, __func__, pt_addr);
return ERROR_FAIL;
}if (x86_32_common_read_phys_mem(t, pt_addr, 4, 1, entry_buffer) != ERROR_OK) { ... }
uint32_t pt_entry = target_buffer_get_u32(t, entry_buffer);
if (!(pt_entry & 0x00000001)) {
LOG_ERROR("%s page table entry at 0x%08" PRIx32 " is not present", __func__, pt_addr);
return ERROR_FAIL;
}if (!(pt_entry & 0x00000001)) { ... }
uint32_t page_base = pt_entry & 0xFFFFF000;
*physaddr = page_base + (addr & 0x00000FFF);
}else { ... }
}else { ... }
return ERROR_OK;
}{ ... }
int x86_32_common_read_memory(struct target *t, target_addr_t addr,
uint32_t size, uint32_t count, uint8_t *buf)
{
int retval = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("addr=" TARGET_ADDR_FMT ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
addr, size, count, buf);
check_not_halted(t);
if (!count || !buf || !addr) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
__func__, count, buf, addr);
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (!count || !buf || !addr) { ... }
if (x86_32->is_paging_enabled(t)) {
/* ... */
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
target_addr_t physaddr = 0;
if (calcaddr_physfromlin(t, addr, &physaddr) != ERROR_OK) {
LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
__func__, addr);
retval = ERROR_FAIL;
}if (calcaddr_physfromlin(t, addr, &physaddr) != ERROR_OK) { ... }
/* ... */
if (retval == ERROR_OK
&& x86_32_common_read_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) {
LOG_ERROR("%s failed to read memory from physical address " TARGET_ADDR_FMT,
__func__, physaddr);
}if (retval == ERROR_OK && x86_32_common_read_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) { ... }
retval = x86_32->enable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
}if (x86_32->is_paging_enabled(t)) { ... } else {
if (x86_32_common_read_phys_mem(t, addr, size, count, buf) != ERROR_OK) {
LOG_ERROR("%s failed to read memory from address " TARGET_ADDR_FMT,
__func__, addr);
retval = ERROR_FAIL;
}if (x86_32_common_read_phys_mem(t, addr, size, count, buf) != ERROR_OK) { ... }
}else { ... }
return retval;
}{ ... }
int x86_32_common_write_memory(struct target *t, target_addr_t addr,
uint32_t size, uint32_t count, const uint8_t *buf)
{
int retval = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("addr=" TARGET_ADDR_FMT ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
addr, size, count, buf);
check_not_halted(t);
if (!count || !buf || !addr) {
LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
__func__, count, buf, addr);
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (!count || !buf || !addr) { ... }
if (x86_32->is_paging_enabled(t)) {
/* ... */
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
target_addr_t physaddr = 0;
if (calcaddr_physfromlin(t, addr, &physaddr) != ERROR_OK) {
LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
__func__, addr);
retval = ERROR_FAIL;
}if (calcaddr_physfromlin(t, addr, &physaddr) != ERROR_OK) { ... }
/* ... */
if (retval == ERROR_OK
&& x86_32_common_write_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) {
LOG_ERROR("%s failed to write memory to physical address " TARGET_ADDR_FMT,
__func__, physaddr);
}if (retval == ERROR_OK && x86_32_common_write_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) { ... }
retval = x86_32->enable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
}if (x86_32->is_paging_enabled(t)) { ... } else {
if (x86_32_common_write_phys_mem(t, addr, size, count, buf) != ERROR_OK) {
LOG_ERROR("%s failed to write memory to address " TARGET_ADDR_FMT,
__func__, addr);
retval = ERROR_FAIL;
}if (x86_32_common_write_phys_mem(t, addr, size, count, buf) != ERROR_OK) { ... }
}else { ... }
return retval;
}{ ... }
int x86_32_common_read_io(struct target *t, uint32_t addr,
uint32_t size, uint8_t *buf)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
int retval = ERROR_FAIL;
bool pg_disabled = false;
LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", buf=%p", addr, size, buf);
check_not_halted(t);
if (!buf || !addr) {
LOG_ERROR("%s invalid params buf=%p, addr=%08" PRIx32, __func__, buf, addr);
return retval;
}if (!buf || !addr) { ... }
retval = x86_32->write_hw_reg(t, EDX, addr, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error EDX write", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
if (x86_32->is_paging_enabled(t)) {
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
pg_disabled = true;
}if (x86_32->is_paging_enabled(t)) { ... }
switch (size) {
case BYTE:
if (use32)
retval = x86_32->submit_instruction(t, IORDB32);
else
retval = x86_32->submit_instruction(t, IORDB16);
break;case BYTE:
case WORD:
if (use32)
retval = x86_32->submit_instruction(t, IORDH32);
else
retval = x86_32->submit_instruction(t, IORDH16);
break;case WORD:
case DWORD:
if (use32)
retval = x86_32->submit_instruction(t, IORDW32);
else
retval = x86_32->submit_instruction(t, IORDW16);
break;case DWORD:
default:
LOG_ERROR("%s invalid read io size", __func__);
return ERROR_FAIL;default
}switch (size) { ... }
if (pg_disabled) {
int retval2 = x86_32->enable_paging(t);
if (retval2 != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval2;
}if (retval2 != ERROR_OK) { ... }
}if (pg_disabled) { ... }
if (retval != ERROR_OK)
return retval;
uint32_t regval = 0;
retval = x86_32->read_hw_reg(t, EAX, ®val, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on read EAX", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
for (uint8_t i = 0; i < size; i++)
buf[i] = (regval >> (i*8)) & 0x000000FF;
retval = x86_32->transaction_status(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on io read", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
return retval;
}{ ... }
int x86_32_common_write_io(struct target *t, uint32_t addr,
uint32_t size, const uint8_t *buf)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", buf=%p", addr, size, buf);
check_not_halted(t);
int retval = ERROR_FAIL;
bool pg_disabled = false;
if (!buf || !addr) {
LOG_ERROR("%s invalid params buf=%p, addr=0x%08" PRIx32, __func__, buf, addr);
return retval;
}if (!buf || !addr) { ... }
retval = x86_32->write_hw_reg(t, EDX, addr, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on EDX write", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
uint32_t regval = 0;
for (uint8_t i = 0; i < size; i++)
regval += (buf[i] << (i*8));
retval = x86_32->write_hw_reg(t, EAX, regval, 0);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on EAX write", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
if (x86_32->is_paging_enabled(t)) {
retval = x86_32->disable_paging(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s could not disable paging", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
pg_disabled = true;
}if (x86_32->is_paging_enabled(t)) { ... }
switch (size) {
case BYTE:
if (use32)
retval = x86_32->submit_instruction(t, IOWRB32);
else
retval = x86_32->submit_instruction(t, IOWRB16);
break;case BYTE:
case WORD:
if (use32)
retval = x86_32->submit_instruction(t, IOWRH32);
else
retval = x86_32->submit_instruction(t, IOWRH16);
break;case WORD:
case DWORD:
if (use32)
retval = x86_32->submit_instruction(t, IOWRW32);
else
retval = x86_32->submit_instruction(t, IOWRW16);
break;case DWORD:
default:
LOG_ERROR("%s invalid write io size", __func__);
return ERROR_FAIL;default
}switch (size) { ... }
if (pg_disabled) {
int retval2 = x86_32->enable_paging(t);
if (retval2 != ERROR_OK) {
LOG_ERROR("%s could not enable paging", __func__);
return retval2;
}if (retval2 != ERROR_OK) { ... }
}if (pg_disabled) { ... }
if (retval != ERROR_OK)
return retval;
retval = x86_32->transaction_status(t);
if (retval != ERROR_OK) {
LOG_ERROR("%s error on io write", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
return retval;
}{ ... }
int x86_32_common_add_watchpoint(struct target *t, struct watchpoint *wp)
{
check_not_halted(t);
/* ... */
return set_watchpoint(t, wp);
}{ ... }
int x86_32_common_remove_watchpoint(struct target *t, struct watchpoint *wp)
{
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if (wp->is_set)
unset_watchpoint(t, wp);
return ERROR_OK;
}{ ... }
int x86_32_common_add_breakpoint(struct target *t, struct breakpoint *bp)
{
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
/* ... */
return set_breakpoint(t, bp);
}{ ... }
int x86_32_common_remove_breakpoint(struct target *t, struct breakpoint *bp)
{
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if (bp->is_set)
unset_breakpoint(t, bp);
return ERROR_OK;
}{ ... }
static int set_debug_regs(struct target *t, uint32_t address,
uint8_t bp_num, uint8_t bp_type, uint8_t bp_length)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("addr=0x%08" PRIx32 ", bp_num=%" PRIu8 ", bp_type=%" PRIu8 ", pb_length=%" PRIu8,
address, bp_num, bp_type, bp_length);
uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
if (bp_length != 1 && bp_length != 2 && bp_length != 4)
return ERROR_FAIL;
if (DR7_BP_FREE(dr7, bp_num))
DR7_GLOBAL_ENABLE(dr7, bp_num);
else {
LOG_ERROR("%s dr7 error, already enabled, val=%08" PRIx32, __func__, dr7);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}else { ... }
switch (bp_type) {
case 0:
DR7_SET_EXE(dr7, bp_num);
DR7_SET_LENGTH(dr7, bp_num, bp_length);
break;case 0:
case 1:
DR7_SET_WRITE(dr7, bp_num);
DR7_SET_LENGTH(dr7, bp_num, bp_length);
break;case 1:
case 2:
LOG_ERROR("%s unsupported feature bp_type=%d", __func__, bp_type);
return ERROR_FAIL;
break;case 2:
case 3:
DR7_SET_ACCESS(dr7, bp_num);
DR7_SET_LENGTH(dr7, bp_num, bp_length);
break;case 3:
default:
LOG_ERROR("%s invalid request [only 0-3] bp_type=%d", __func__, bp_type);
return ERROR_FAIL;default
}switch (bp_type) { ... }
/* ... */
buf_set_u32(x86_32->cache->reg_list[bp_num+DR0].value, 0, 32, address);
x86_32->cache->reg_list[bp_num+DR0].dirty = true;
x86_32->cache->reg_list[bp_num+DR0].valid = true;
buf_set_u32(x86_32->cache->reg_list[DR6].value, 0, 32, PM_DR6);
x86_32->cache->reg_list[DR6].dirty = true;
x86_32->cache->reg_list[DR6].valid = true;
buf_set_u32(x86_32->cache->reg_list[DR7].value, 0, 32, dr7);
x86_32->cache->reg_list[DR7].dirty = true;
x86_32->cache->reg_list[DR7].valid = true;
return ERROR_OK;
}{ ... }
static int unset_debug_regs(struct target *t, uint8_t bp_num)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("bp_num=%" PRIu8, bp_num);
uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
if (!(DR7_BP_FREE(dr7, bp_num))) {
DR7_GLOBAL_DISABLE(dr7, bp_num);
}if (!(DR7_BP_FREE(dr7, bp_num))) { ... } else {
LOG_ERROR("%s dr7 error, not enabled, val=0x%08" PRIx32, __func__, dr7);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}else { ... }
DR7_RESET_RWLEN_BITS(dr7, bp_num);
/* ... */
buf_set_u32(x86_32->cache->reg_list[bp_num+DR0].value, 0, 32, 0);
x86_32->cache->reg_list[bp_num+DR0].dirty = true;
x86_32->cache->reg_list[bp_num+DR0].valid = true;
buf_set_u32(x86_32->cache->reg_list[DR6].value, 0, 32, PM_DR6);
x86_32->cache->reg_list[DR6].dirty = true;
x86_32->cache->reg_list[DR6].valid = true;
buf_set_u32(x86_32->cache->reg_list[DR7].value, 0, 32, dr7);
x86_32->cache->reg_list[DR7].dirty = true;
x86_32->cache->reg_list[DR7].valid = true;
return ERROR_OK;
}{ ... }
static int set_hwbp(struct target *t, struct breakpoint *bp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
uint8_t hwbp_num = 0;
while (debug_reg_list[hwbp_num].used && (hwbp_num < x86_32->num_hw_bpoints))
hwbp_num++;
if (hwbp_num >= x86_32->num_hw_bpoints) {
LOG_ERROR("%s no free hw breakpoint bpid=0x%" PRIx32, __func__, bp->unique_id);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (hwbp_num >= x86_32->num_hw_bpoints) { ... }
if (set_debug_regs(t, bp->address, hwbp_num, DR7_BP_EXECUTE, 1) != ERROR_OK)
return ERROR_FAIL;
breakpoint_hw_set(bp, hwbp_num);
debug_reg_list[hwbp_num].used = 1;
debug_reg_list[hwbp_num].bp_value = bp->address;
LOG_USER("%s hardware breakpoint %" PRIu32 " set at 0x%08" PRIx32 " (hwreg=%" PRIu8 ")", __func__,
bp->unique_id, debug_reg_list[hwbp_num].bp_value, hwbp_num);
return ERROR_OK;
}{ ... }
static int unset_hwbp(struct target *t, struct breakpoint *bp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
int hwbp_num = bp->number;
if (hwbp_num >= x86_32->num_hw_bpoints) {
LOG_ERROR("%s invalid breakpoint number=%d, bpid=%" PRIu32,
__func__, hwbp_num, bp->unique_id);
return ERROR_OK;
}if (hwbp_num >= x86_32->num_hw_bpoints) { ... }
if (unset_debug_regs(t, hwbp_num) != ERROR_OK)
return ERROR_FAIL;
debug_reg_list[hwbp_num].used = 0;
debug_reg_list[hwbp_num].bp_value = 0;
LOG_USER("%s hardware breakpoint %" PRIu32 " removed from " TARGET_ADDR_FMT " (hwreg=%d)",
__func__, bp->unique_id, bp->address, hwbp_num);
return ERROR_OK;
}{ ... }
static int set_swbp(struct target *t, struct breakpoint *bp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("id %" PRIx32, bp->unique_id);
target_addr_t physaddr;
uint8_t opcode = SW_BP_OPCODE;
uint8_t readback;
if (calcaddr_physfromlin(t, bp->address, &physaddr) != ERROR_OK)
return ERROR_FAIL;
if (read_phys_mem(t, physaddr, 1, 1, bp->orig_instr))
return ERROR_FAIL;
LOG_DEBUG("set software breakpoint - orig byte=0x%02" PRIx8 "", *bp->orig_instr);
if (write_phys_mem(t, physaddr, 1, 1, &opcode))
return ERROR_FAIL;
if (read_phys_mem(t, physaddr, 1, 1, &readback))
return ERROR_FAIL;
if (readback != SW_BP_OPCODE) {
LOG_ERROR("%s software breakpoint error at " TARGET_ADDR_FMT ", check memory",
__func__, bp->address);
LOG_ERROR("%s readback=0x%02" PRIx8 " orig=0x%02" PRIx8 "",
__func__, readback, *bp->orig_instr);
return ERROR_FAIL;
}if (readback != SW_BP_OPCODE) { ... }
bp->is_set = true;
struct swbp_mem_patch *new_patch = malloc(sizeof(struct swbp_mem_patch));
if (!new_patch) {
LOG_ERROR("%s out of memory", __func__);
return ERROR_FAIL;
}if (!new_patch) { ... }
new_patch->next = NULL;
new_patch->orig_byte = *bp->orig_instr;
new_patch->physaddr = physaddr;
new_patch->swbp_unique_id = bp->unique_id;
struct swbp_mem_patch *addto = x86_32->swbbp_mem_patch_list;
if (!addto)
x86_32->swbbp_mem_patch_list = new_patch;
else {
while (addto->next)
addto = addto->next;
addto->next = new_patch;
}else { ... }
LOG_USER("%s software breakpoint %" PRIu32 " set at " TARGET_ADDR_FMT,
__func__, bp->unique_id, bp->address);
return ERROR_OK;
}{ ... }
static int unset_swbp(struct target *t, struct breakpoint *bp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("id %" PRIx32, bp->unique_id);
target_addr_t physaddr;
uint8_t current_instr;
if (calcaddr_physfromlin(t, bp->address, &physaddr) != ERROR_OK)
return ERROR_FAIL;
if (read_phys_mem(t, physaddr, 1, 1, ¤t_instr))
return ERROR_FAIL;
if (current_instr == SW_BP_OPCODE) {
if (write_phys_mem(t, physaddr, 1, 1, bp->orig_instr))
return ERROR_FAIL;
}if (current_instr == SW_BP_OPCODE) { ... } else {
LOG_ERROR("%s software breakpoint remove error at " TARGET_ADDR_FMT ", check memory",
__func__, bp->address);
LOG_ERROR("%s current=0x%02" PRIx8 " orig=0x%02" PRIx8 "",
__func__, current_instr, *bp->orig_instr);
return ERROR_FAIL;
}else { ... }
struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
if (iter) {
if (iter->swbp_unique_id == bp->unique_id) {
x86_32->swbbp_mem_patch_list = iter->next;
free(iter);
}if (iter->swbp_unique_id == bp->unique_id) { ... } else {
while (iter->next && iter->next->swbp_unique_id != bp->unique_id)
iter = iter->next;
if (iter->next) {
struct swbp_mem_patch *freeme = iter->next;
iter->next = iter->next->next;
free(freeme);
}if (iter->next) { ... }
}else { ... }
}if (iter) { ... }
LOG_USER("%s software breakpoint %" PRIu32 " removed from " TARGET_ADDR_FMT,
__func__, bp->unique_id, bp->address);
return ERROR_OK;
}{ ... }
static int set_breakpoint(struct target *t, struct breakpoint *bp)
{
int error = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
if (bp->is_set) {
LOG_ERROR("breakpoint already set");
return error;
}if (bp->is_set) { ... }
if (bp->type == BKPT_HARD) {
error = set_hwbp(t, bp);
if (error != ERROR_OK) {
LOG_ERROR("%s error setting hardware breakpoint at " TARGET_ADDR_FMT,
__func__, bp->address);
return error;
}if (error != ERROR_OK) { ... }
}if (bp->type == BKPT_HARD) { ... } else {
if (x86_32->sw_bpts_supported(t)) {
error = set_swbp(t, bp);
if (error != ERROR_OK) {
LOG_ERROR("%s error setting software breakpoint at " TARGET_ADDR_FMT,
__func__, bp->address);
return error;
}if (error != ERROR_OK) { ... }
}if (x86_32->sw_bpts_supported(t)) { ... } else {
LOG_ERROR("%s core doesn't support SW breakpoints", __func__);
return ERROR_FAIL;
}else { ... }
}else { ... }
return error;
}{ ... }
static int unset_breakpoint(struct target *t, struct breakpoint *bp)
{
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
if (!bp->is_set) {
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}if (!bp->is_set) { ... }
if (bp->type == BKPT_HARD) {
if (unset_hwbp(t, bp) != ERROR_OK) {
LOG_ERROR("%s error removing hardware breakpoint at " TARGET_ADDR_FMT,
__func__, bp->address);
return ERROR_FAIL;
}if (unset_hwbp(t, bp) != ERROR_OK) { ... }
}if (bp->type == BKPT_HARD) { ... } else {
if (unset_swbp(t, bp) != ERROR_OK) {
LOG_ERROR("%s error removing software breakpoint at " TARGET_ADDR_FMT,
__func__, bp->address);
return ERROR_FAIL;
}if (unset_swbp(t, bp) != ERROR_OK) { ... }
}else { ... }
bp->is_set = false;
return ERROR_OK;
}{ ... }
static int set_watchpoint(struct target *t, struct watchpoint *wp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
int wp_num = 0;
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, wp->rw, wp->address);
if (wp->is_set) {
LOG_ERROR("%s watchpoint already set", __func__);
return ERROR_OK;
}if (wp->is_set) { ... }
if (wp->rw == WPT_READ) {
LOG_ERROR("%s no support for 'read' watchpoints, use 'access' or 'write'"
, __func__);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (wp->rw == WPT_READ) { ... }
while (debug_reg_list[wp_num].used && (wp_num < x86_32->num_hw_bpoints))
wp_num++;
if (wp_num >= x86_32->num_hw_bpoints) {
LOG_ERROR("%s no debug registers left", __func__);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (wp_num >= x86_32->num_hw_bpoints) { ... }
if (wp->length != 4 && wp->length != 2 && wp->length != 1) {
LOG_ERROR("%s only watchpoints of length 1, 2 or 4 are supported", __func__);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (wp->length != 4 && wp->length != 2 && wp->length != 1) { ... }
switch (wp->rw) {
case WPT_WRITE:
if (set_debug_regs(t, wp->address, wp_num,
DR7_BP_WRITE, wp->length) != ERROR_OK) {
return ERROR_FAIL;
}if (set_debug_regs(t, wp->address, wp_num, DR7_BP_WRITE, wp->length) != ERROR_OK) { ... }
break;case WPT_WRITE:
case WPT_ACCESS:
if (set_debug_regs(t, wp->address, wp_num, DR7_BP_READWRITE,
wp->length) != ERROR_OK) {
return ERROR_FAIL;
}if (set_debug_regs(t, wp->address, wp_num, DR7_BP_READWRITE, wp->length) != ERROR_OK) { ... }
break;case WPT_ACCESS:
default:
LOG_ERROR("%s only 'access' or 'write' watchpoints are supported", __func__);
break;default
}switch (wp->rw) { ... }
watchpoint_set(wp, wp_num);
debug_reg_list[wp_num].used = 1;
debug_reg_list[wp_num].bp_value = wp->address;
LOG_USER("'%s' watchpoint %d set at " TARGET_ADDR_FMT " with length %" PRIu32 " (hwreg=%d)",
wp->rw == WPT_READ ? "read" : wp->rw == WPT_WRITE ?
"write" : wp->rw == WPT_ACCESS ? "access" : "?",
wp->unique_id, wp->address, wp->length, wp_num);
return ERROR_OK;
}{ ... }
static int unset_watchpoint(struct target *t, struct watchpoint *wp)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, wp->rw, wp->address);
if (!wp->is_set) {
LOG_WARNING("watchpoint not set");
return ERROR_OK;
}if (!wp->is_set) { ... }
int wp_num = wp->number;
if (wp_num >= x86_32->num_hw_bpoints) {
LOG_DEBUG("Invalid FP Comparator number in watchpoint");
return ERROR_OK;
}if (wp_num >= x86_32->num_hw_bpoints) { ... }
if (unset_debug_regs(t, wp_num) != ERROR_OK)
return ERROR_FAIL;
debug_reg_list[wp_num].used = 0;
debug_reg_list[wp_num].bp_value = 0;
wp->is_set = false;
LOG_USER("'%s' watchpoint %d removed from " TARGET_ADDR_FMT " with length %" PRIu32 " (hwreg=%d)",
wp->rw == WPT_READ ? "read" : wp->rw == WPT_WRITE ?
"write" : wp->rw == WPT_ACCESS ? "access" : "?",
wp->unique_id, wp->address, wp->length, wp_num);
return ERROR_OK;
}{ ... }
/* ... */
void x86_32_common_reset_breakpoints_watchpoints(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
struct breakpoint *next_b;
struct watchpoint *next_w;
while (t->breakpoints) {
next_b = t->breakpoints->next;
free(t->breakpoints->orig_instr);
free(t->breakpoints);
t->breakpoints = next_b;
}while (t->breakpoints) { ... }
while (t->watchpoints) {
next_w = t->watchpoints->next;
free(t->watchpoints);
t->watchpoints = next_w;
}while (t->watchpoints) { ... }
for (int i = 0; i < x86_32->num_hw_bpoints; i++) {
debug_reg_list[i].used = 0;
debug_reg_list[i].bp_value = 0;
}for (int i = 0; i < x86_32->num_hw_bpoints; i++) { ... }
}{ ... }
static int read_hw_reg_to_cache(struct target *t, int num)
{
uint32_t reg_value;
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if ((num < 0) || (num >= x86_32->get_num_user_regs(t)))
return ERROR_COMMAND_SYNTAX_ERROR;
if (x86_32->read_hw_reg(t, num, ®_value, 1) != ERROR_OK) {
LOG_ERROR("%s fail for %s", x86_32->cache->reg_list[num].name, __func__);
return ERROR_FAIL;
}if (x86_32->read_hw_reg(t, num, ®_value, 1) != ERROR_OK) { ... }
LOG_DEBUG("reg %s value 0x%08" PRIx32,
x86_32->cache->reg_list[num].name, reg_value);
return ERROR_OK;
}{ ... }
static int write_hw_reg_from_cache(struct target *t, int num)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if ((num < 0) || (num >= x86_32->get_num_user_regs(t)))
return ERROR_COMMAND_SYNTAX_ERROR;
if (x86_32->write_hw_reg(t, num, 0, 1) != ERROR_OK) {
LOG_ERROR("%s fail for %s", x86_32->cache->reg_list[num].name, __func__);
return ERROR_FAIL;
}if (x86_32->write_hw_reg(t, num, 0, 1) != ERROR_OK) { ... }
LOG_DEBUG("reg %s value 0x%08" PRIx32, x86_32->cache->reg_list[num].name,
buf_get_u32(x86_32->cache->reg_list[num].value, 0, 32));
return ERROR_OK;
}{ ... }
static void handle_iod_output(struct command_invocation *cmd,
struct target *target, uint32_t address, unsigned size,
unsigned count, const uint8_t *buffer)
{
const unsigned line_bytecnt = 32;
unsigned line_modulo = line_bytecnt / size;
char output[line_bytecnt * 4 + 1];
unsigned output_len = 0;
const char *value_fmt;
switch (size) {
case 4:
value_fmt = "%8.8x ";
break;case 4:
case 2:
value_fmt = "%4.4x ";
break;case 2:
case 1:
value_fmt = "%2.2x ";
break;case 1:
default:
LOG_ERROR("%s invalid memory read size: %u", __func__, size);
return;default
}switch (size) { ... }
for (unsigned i = 0; i < count; i++) {
if (i % line_modulo == 0) {
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
"0x%8.8x: ",
(unsigned)(address + (i*size)));
}if (i % line_modulo == 0) { ... }
uint32_t value = 0;
const uint8_t *value_ptr = buffer + i * size;
switch (size) {
case 4:
value = target_buffer_get_u32(target, value_ptr);
break;case 4:
case 2:
value = target_buffer_get_u16(target, value_ptr);
break;case 2:
case 1:
value = *value_ptr;case 1:
}switch (size) { ... }
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
value_fmt, value);
if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
command_print(cmd, "%s", output);
output_len = 0;
}if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) { ... }
}for (unsigned i = 0; i < count; i++) { ... }
}{ ... }
COMMAND_HANDLER(handle_iod_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t address;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
if (address > 0xffff) {
LOG_ERROR("%s IA-32 I/O space is 2^16, 0x%08" PRIx32 " exceeds max", __func__, address);
return ERROR_COMMAND_SYNTAX_ERROR;
}if (address > 0xffff) { ... }
unsigned size = 0;
switch (CMD_NAME[2]) {
case 'w':
size = 4;
break;case 'w':
case 'h':
size = 2;
break;case 'h':
case 'b':
size = 1;
break;case 'b':
default:
return ERROR_COMMAND_SYNTAX_ERROR;default
}switch (CMD_NAME[2]) { ... }
unsigned count = 1;
uint8_t *buffer = calloc(count, size);
struct target *target = get_current_target(CMD_CTX);
int retval = x86_32_common_read_io(target, address, size, buffer);
if (retval == ERROR_OK)
handle_iod_output(CMD, target, address, size, count, buffer);
free(buffer);
return retval;
}{ ... }
static int target_fill_io(struct target *target,
uint32_t address,
unsigned data_size,
uint32_t b)
{
LOG_DEBUG("address=0x%08" PRIx32 ", data_size=%u, b=0x%08" PRIx32,
address, data_size, b);
uint8_t target_buf[data_size];
switch (data_size) {
case 4:
target_buffer_set_u32(target, target_buf, b);
break;case 4:
case 2:
target_buffer_set_u16(target, target_buf, b);
break;case 2:
case 1:
target_buf[0] = (b & 0x0ff);
break;case 1:
default:
exit(-1);default
}switch (data_size) { ... }
return x86_32_common_write_io(target, address, data_size, target_buf);
}{ ... }
COMMAND_HANDLER(handle_iow_command)
{
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t address;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
struct target *target = get_current_target(CMD_CTX);
unsigned wordsize;
switch (CMD_NAME[2]) {
case 'w':
wordsize = 4;
break;case 'w':
case 'h':
wordsize = 2;
break;case 'h':
case 'b':
wordsize = 1;
break;case 'b':
default:
return ERROR_COMMAND_SYNTAX_ERROR;default
}switch (CMD_NAME[2]) { ... }
return target_fill_io(target, address, wordsize, value);
}{ ... }
static const struct command_registration x86_32_exec_command_handlers[] = {
{
.name = "iww",
.mode = COMMAND_EXEC,
.handler = handle_iow_command,
.help = "write I/O port word",
.usage = "port data[word]",
...},
{
.name = "iwh",
.mode = COMMAND_EXEC,
.handler = handle_iow_command,
.help = "write I/O port halfword",
.usage = "port data[halfword]",
...},
{
.name = "iwb",
.mode = COMMAND_EXEC,
.handler = handle_iow_command,
.help = "write I/O port byte",
.usage = "port data[byte]",
...},
{
.name = "idw",
.mode = COMMAND_EXEC,
.handler = handle_iod_command,
.help = "display I/O port word",
.usage = "port",
...},
{
.name = "idh",
.mode = COMMAND_EXEC,
.handler = handle_iod_command,
.help = "display I/O port halfword",
.usage = "port",
...},
{
.name = "idb",
.mode = COMMAND_EXEC,
.handler = handle_iod_command,
.help = "display I/O port byte",
.usage = "port",
...},
COMMAND_REGISTRATION_DONE
...};
const struct command_registration x86_32_command_handlers[] = {
{
.name = "x86_32",
.mode = COMMAND_ANY,
.help = "x86_32 target commands",
.usage = "",
.chain = x86_32_exec_command_handlers,
...},
COMMAND_REGISTRATION_DONE
...};