1
2
3
6
7
8
9
10
11
18
19
20
26
27
28
29
30
31
32
33
34
35
36
40
41
42
46
47
48
49
50
51
52
53
54
55
56
57
58
59
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
86
87
96
97
98
99
100
101
102
103
104
105
106
107
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
151
152
153
154
155
169
170
174
175
179
180
184
185
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
210
211
212
213
214
215
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/* ... */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target.h"
#include "target_type.h"
#include "arm_adi_v5.h"
#include "register.h"
#include <jtag/jtag.h>
5 includes
#define MEM_AP_COMMON_MAGIC 0x4DE4DA50
struct mem_ap {
int common_magic;
struct adiv5_dap *dap;
struct adiv5_ap *ap;
uint64_t ap_num;
...};
static int mem_ap_target_create(struct target *target, Jim_Interp *interp)
{
struct mem_ap *mem_ap;
struct adiv5_private_config *pc;
pc = (struct adiv5_private_config *)target->private_config;
if (!pc)
return ERROR_FAIL;
if (pc->ap_num == DP_APSEL_INVALID) {
LOG_ERROR("AP number not specified");
return ERROR_FAIL;
}if (pc->ap_num == DP_APSEL_INVALID) { ... }
mem_ap = calloc(1, sizeof(struct mem_ap));
if (!mem_ap) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}if (!mem_ap) { ... }
mem_ap->ap_num = pc->ap_num;
mem_ap->common_magic = MEM_AP_COMMON_MAGIC;
mem_ap->dap = pc->dap;
target->arch_info = mem_ap;
if (!target->gdb_port_override)
target->gdb_port_override = strdup("disabled");
return ERROR_OK;
}{ ... }
static int mem_ap_init_target(struct command_context *cmd_ctx, struct target *target)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
return ERROR_OK;
}{ ... }
static void mem_ap_deinit_target(struct target *target)
{
struct mem_ap *mem_ap = target->arch_info;
LOG_DEBUG("%s", __func__);
if (mem_ap->ap)
dap_put_ap(mem_ap->ap);
free(target->private_config);
free(target->arch_info);
return;
}{ ... }
static int mem_ap_arch_state(struct target *target)
{
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}{ ... }
static int mem_ap_poll(struct target *target)
{
if (target->state == TARGET_UNKNOWN) {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}if (target->state == TARGET_UNKNOWN) { ... }
return ERROR_OK;
}{ ... }
static int mem_ap_halt(struct target *target)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}{ ... }
static int mem_ap_resume(struct target *target, int current, target_addr_t address,
int handle_breakpoints, int debug_execution)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
return ERROR_OK;
}{ ... }
static int mem_ap_step(struct target *target, int current, target_addr_t address,
int handle_breakpoints)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}{ ... }
static int mem_ap_assert_reset(struct target *target)
{
target->state = TARGET_RESET;
target->debug_reason = DBG_REASON_UNDEFINED;
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}{ ... }
static int mem_ap_examine(struct target *target)
{
struct mem_ap *mem_ap = target->arch_info;
if (!target_was_examined(target)) {
if (!mem_ap->ap) {
mem_ap->ap = dap_get_ap(mem_ap->dap, mem_ap->ap_num);
if (!mem_ap->ap) {
LOG_ERROR("Cannot get AP");
return ERROR_FAIL;
}if (!mem_ap->ap) { ... }
}if (!mem_ap->ap) { ... }
target_set_examined(target);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
return mem_ap_init(mem_ap->ap);
}if (!target_was_examined(target)) { ... }
return ERROR_OK;
}{ ... }
static int mem_ap_deassert_reset(struct target *target)
{
if (target->reset_halt) {
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}if (target->reset_halt) { ... } else {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}else { ... }
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}{ ... }
static int mem_ap_reg_get(struct reg *reg)
{
return ERROR_OK;
}{ ... }
static int mem_ap_reg_set(struct reg *reg, uint8_t *buf)
{
return ERROR_OK;
}{ ... }
static struct reg_arch_type mem_ap_reg_arch_type = {
.get = mem_ap_reg_get,
.set = mem_ap_reg_set,
...};
static const char *mem_ap_get_gdb_arch(const struct target *target)
{
return "arm";
}{ ... }
/* ... */
#define NUM_REGS 26
#define NUM_GDB_REGS 16
#define MAX_REG_SIZE 96
#define REG_SIZE(n) ((((n) >= 16) && ((n) < 24)) ? 96 : 32)
struct mem_ap_alloc_reg_list {
struct reg *reg_list[NUM_REGS];
struct reg regs[NUM_REGS];
uint8_t regs_value[MAX_REG_SIZE / 8];
...};
static int mem_ap_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
struct mem_ap_alloc_reg_list *mem_ap_alloc = calloc(1, sizeof(struct mem_ap_alloc_reg_list));
if (!mem_ap_alloc) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}if (!mem_ap_alloc) { ... }
*reg_list = mem_ap_alloc->reg_list;
*reg_list_size = (reg_class == REG_CLASS_ALL) ? NUM_REGS : NUM_GDB_REGS;
struct reg *regs = mem_ap_alloc->regs;
for (int i = 0; i < NUM_REGS; i++) {
regs[i].number = i;
regs[i].value = mem_ap_alloc->regs_value;
regs[i].size = REG_SIZE(i);
regs[i].exist = true;
regs[i].type = &mem_ap_reg_arch_type;
(*reg_list)[i] = ®s[i];
}for (int i = 0; i < NUM_REGS; i++) { ... }
return ERROR_OK;
}{ ... }
static int mem_ap_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct mem_ap *mem_ap = target->arch_info;
LOG_DEBUG("Reading memory at physical address " TARGET_ADDR_FMT
"; size %" PRIu32 "; count %" PRIu32, address, size, count);
if (count == 0 || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;
return mem_ap_read_buf(mem_ap->ap, buffer, size, count, address);
}{ ... }
static int mem_ap_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count,
const uint8_t *buffer)
{
struct mem_ap *mem_ap = target->arch_info;
LOG_DEBUG("Writing memory at physical address " TARGET_ADDR_FMT
"; size %" PRIu32 "; count %" PRIu32, address, size, count);
if (count == 0 || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;
return mem_ap_write_buf(mem_ap->ap, buffer, size, count, address);
}{ ... }
struct target_type mem_ap_target = {
.name = "mem_ap",
.target_create = mem_ap_target_create,
.init_target = mem_ap_init_target,
.deinit_target = mem_ap_deinit_target,
.examine = mem_ap_examine,
.target_jim_configure = adiv5_jim_configure,
.poll = mem_ap_poll,
.arch_state = mem_ap_arch_state,
.halt = mem_ap_halt,
.resume = mem_ap_resume,
.step = mem_ap_step,
.assert_reset = mem_ap_assert_reset,
.deassert_reset = mem_ap_deassert_reset,
.get_gdb_arch = mem_ap_get_gdb_arch,
.get_gdb_reg_list = mem_ap_get_gdb_reg_list,
.read_memory = mem_ap_read_memory,
.write_memory = mem_ap_write_memory,
...};