1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
21
22
23
24
25
26
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
213
214
215
216
217
218
219
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
244
245
246
247
248
249
250
251
252
257
263
264
265
266
267
268
275
285
286
287
288
289
290
291
292
293
297
298
299
300
301
302
303
304
305
306
307
308
312
313
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
361
362
363
364
365
366
367
368
369
370
371
372
373
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
444
445
446
447
448
449
450
451
457
458
459
460
461
462
463
464
465
466
467
468
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
530
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
612
613
614
615
616
617
618
619
620
621
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
704
705
706
707
708
709
710
711
712
713
714
715
716
721
722
723
724
725
726
727
731
732
733
734
735
736
737
738
739
743
744
745
746
747
748
749
750
751
752
753
754
755
766
767
776
777
787
788
789
790
791
792
793
797
798
799
800
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
853
854
855
864
865
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1094
1095
1098
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1140
1141
1142
1143
1144
1145
1146
1151
1152
1153
1154
1155
1156
1157
1158
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1182
1183
1188
1189
1190
1194
1195
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1219
1220
1221
1222
1223
1227
1228
1239
1240
1241
1242
/* ... */
/* ... */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/log.h>
#include "target.h"
#include "target_type.h"
#include "lakemont.h"
#include "register.h"
#include "breakpoints.h"
#include "x86_32_common.h"
7 includes
static int irscan(struct target *t, uint8_t *out,
uint8_t *in, uint8_t ir_len);
static int drscan(struct target *t, uint8_t *out, uint8_t *in, uint8_t len);
static int save_context(struct target *target);
static int restore_context(struct target *target);
static uint32_t get_tapstatus(struct target *t);
static int enter_probemode(struct target *t);
static int exit_probemode(struct target *t);
static int halt_prep(struct target *t);
static int do_halt(struct target *t);
static int do_resume(struct target *t);
static int read_all_core_hw_regs(struct target *t);
static int write_all_core_hw_regs(struct target *t);
static int read_hw_reg(struct target *t,
int reg, uint32_t *regval, uint8_t cache);
static int write_hw_reg(struct target *t,
int reg, uint32_t regval, uint8_t cache);
static struct reg_cache *lakemont_build_reg_cache
(struct target *target);
static int submit_reg_pir(struct target *t, int num);
static int submit_instruction_pir(struct target *t, int num);
static int submit_pir(struct target *t, uint64_t op);
static int lakemont_get_core_reg(struct reg *reg);
static int lakemont_set_core_reg(struct reg *reg, uint8_t *buf);
static struct scan_blk scan;
/* ... */
static const struct {
uint8_t id;
const char *name;
uint64_t op;
uint8_t pm_idx;
unsigned bits;
enum reg_type type;
const char *group;
const char *feature;
...} regs[] = {
{ EAX, "eax", 0x000000D01D660000ULL, 0, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ECX, "ecx", 0x000000501D660000ULL, 1, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ EDX, "edx", 0x000000901D660000ULL, 2, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ EBX, "ebx", 0x000000101D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ESP, "esp", 0x000000E01D660000ULL, NOT_PMREG, 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.i386.core" },
{ EBP, "ebp", 0x000000601D660000ULL, NOT_PMREG, 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.i386.core" },
{ ESI, "esi", 0x000000A01D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ EDI, "edi", 0x000000201D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ EIP, "eip", 0x000000C01D660000ULL, 3, 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.i386.core" },
{ EFLAGS, "eflags", 0x000000401D660000ULL, 4, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ CS, "cs", 0x000000281D660000ULL, 5, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ SS, "ss", 0x000000C81D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ DS, "ds", 0x000000481D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ES, "es", 0x000000A81D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FS, "fs", 0x000000881D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ GS, "gs", 0x000000081D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST0, "st0", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST1, "st1", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST2, "st2", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST3, "st3", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST4, "st4", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST5, "st5", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST6, "st6", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST7, "st7", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FCTRL, "fctrl", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FSTAT, "fstat", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FTAG, "ftag", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FISEG, "fiseg", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FIOFF, "fioff", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FOSEG, "foseg", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FOOFF, "fooff", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FOP, "fop", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ CR0, "cr0", 0x000000001D660000ULL, 6, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CR2, "cr2", 0x000000BC1D660000ULL, 7, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CR3, "cr3", 0x000000801D660000ULL, 8, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CR4, "cr4", 0x0000002C1D660000ULL, 9, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR0, "dr0", 0x0000007C1D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR1, "dr1", 0x000000FC1D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR2, "dr2", 0x000000021D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR3, "dr3", 0x000000821D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR6, "dr6", 0x000000301D660000ULL, 10, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR7, "dr7", 0x000000B01D660000ULL, 11, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ IDTB, "idtbase", 0x000000581D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ IDTL, "idtlimit", 0x000000D81D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ IDTAR, "idtar", 0x000000981D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GDTB, "gdtbase", 0x000000B81D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GDTL, "gdtlimit", 0x000000781D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GDTAR, "gdtar", 0x000000381D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ TR, "tr", 0x000000701D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ LDTR, "ldtr", 0x000000F01D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ LDTB, "ldbase", 0x000000041D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ LDTL, "ldlimit", 0x000000841D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ LDTAR, "ldtar", 0x000000F81D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CSB, "csbase", 0x000000F41D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CSL, "cslimit", 0x0000000C1D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CSAR, "csar", 0x000000741D660000ULL, 12, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DSB, "dsbase", 0x000000941D660000ULL, 13, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DSL, "dslimit", 0x000000541D660000ULL, 14, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DSAR, "dsar", 0x000000141D660000ULL, 15, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ ESB, "esbase", 0x0000004C1D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ ESL, "eslimit", 0x000000CC1D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ ESAR, "esar", 0x0000008C1D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ FSB, "fsbase", 0x000000641D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ FSL, "fslimit", 0x000000E41D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ FSAR, "fsar", 0x000000A41D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GSB, "gsbase", 0x000000C41D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GSL, "gslimit", 0x000000241D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GSAR, "gsar", 0x000000441D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ SSB, "ssbase", 0x000000341D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ SSL, "sslimit", 0x000000B41D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ SSAR, "ssar", 0x000000D41D660000ULL, 16, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ TSSB, "tssbase", 0x000000E81D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ TSSL, "tsslimit", 0x000000181D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ TSSAR, "tssar", 0x000000681D660000ULL, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ PMCR, "pmcr", 0x000000421D660000ULL, 17, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
...};
static const struct {
uint8_t id;
const char *name;
uint64_t op;
...} instructions[] = {
{ MEMRDB32, "MEMRDB32", 0x0909090909090851ULL },
{ MEMRDB16, "MEMRDB16", 0x09090909090851E6ULL },
{ MEMRDH32, "MEMRDH32", 0x090909090908D166ULL },
{ MEMRDH16, "MEMRDH16", 0x090909090908D1E6ULL },
{ MEMRDW32, "MEMRDW32", 0x09090909090908D1ULL },
{ MEMRDW16, "MEMRDW16", 0x0909090908D1E666ULL },
{ MEMWRB32, "MEMWRB32", 0x0909090909090811ULL },
{ MEMWRB16, "MEMWRB16", 0x09090909090811E6ULL },
{ MEMWRH32, "MEMWRH32", 0x0909090909089166ULL },
{ MEMWRH16, "MEMWRH16", 0x09090909090891E6ULL },
{ MEMWRW32, "MEMWRW32", 0x0909090909090891ULL },
{ MEMWRW16, "MEMWRW16", 0x090909090891E666ULL },
{ IORDB32, "IORDB32", 0x0909090909090937ULL },
{ IORDB16, "IORDB16", 0x09090909090937E6ULL },
{ IORDH32, "IORDH32", 0x090909090909B766ULL },
{ IORDH16, "IORDH16", 0x090909090909B7E6ULL },
{ IORDW32, "IORDW32", 0x09090909090909B7ULL },
{ IORDW16, "IORDW16", 0x0909090909B7E666ULL },
{ IOWRB32, "IOWRB32", 0x0909090909090977ULL },
{ IOWRB16, "IOWRB16", 0x09090909090977E6ULL },
{ IOWRH32, "IOWRH32", 0x090909090909F766ULL },
{ IOWRH16, "IOWRH16", 0x090909090909F7E6ULL },
{ IOWRW32, "IOWRW32", 0x09090909090909F7ULL },
{ IOWRW16, "IOWRW16", 0x0909090909F7E666ULL },
{ SRAMACCESS, "SRAMACCESS", 0x0000000E9D660000ULL },
{ SRAM2PDR, "SRAM2PDR", 0x4CF0000000000000ULL },
{ PDR2SRAM, "PDR2SRAM", 0x0CF0000000000000ULL },
{ WBINVD, "WBINVD", 0x09090909090990F0ULL },
...};
bool check_not_halted(const struct target *t)
{
bool halted = t->state == TARGET_HALTED;
if (!halted)
LOG_ERROR("target running, halt it first");
return !halted;
}{ ... }
static int irscan(struct target *t, uint8_t *out,
uint8_t *in, uint8_t ir_len)
{
int retval = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (!t->tap) {
retval = ERROR_FAIL;
LOG_ERROR("%s invalid target tap", __func__);
return retval;
}if (!t->tap) { ... }
if (ir_len != t->tap->ir_length) {
retval = ERROR_FAIL;
if (t->tap->enabled)
LOG_ERROR("%s tap enabled but tap irlen=%u",
__func__, t->tap->ir_length);
else
LOG_ERROR("%s tap not enabled and irlen=%u",
__func__, t->tap->ir_length);
return retval;
}if (ir_len != t->tap->ir_length) { ... }
struct scan_field *fields = &scan.field;
fields->num_bits = ir_len;
fields->out_value = out;
fields->in_value = in;
jtag_add_ir_scan(x86_32->curr_tap, fields, TAP_IDLE);
if (x86_32->flush) {
retval = jtag_execute_queue();
if (retval != ERROR_OK)
LOG_ERROR("%s failed to execute queue", __func__);
}if (x86_32->flush) { ... }
return retval;
}{ ... }
static int drscan(struct target *t, uint8_t *out, uint8_t *in, uint8_t len)
{
int retval = ERROR_OK;
uint64_t data = 0;
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (!t->tap) {
retval = ERROR_FAIL;
LOG_ERROR("%s invalid target tap", __func__);
return retval;
}if (!t->tap) { ... }
if (len > MAX_SCAN_SIZE || 0 == len) {
retval = ERROR_FAIL;
LOG_ERROR("%s data len is %d bits, max is %d bits",
__func__, len, MAX_SCAN_SIZE);
return retval;
}if (len > MAX_SCAN_SIZE || 0 == len) { ... }
struct scan_field *fields = &scan.field;
fields->out_value = out;
fields->in_value = in;
fields->num_bits = len;
jtag_add_dr_scan(x86_32->curr_tap, 1, fields, TAP_IDLE);
if (x86_32->flush) {
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("%s drscan failed to execute queue", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
}if (x86_32->flush) { ... }
if (in) {
if (len >= 8) {
for (int n = (len / 8) - 1 ; n >= 0; n--)
data = (data << 8) + *(in+n);
}if (len >= 8) { ... } else
LOG_DEBUG("dr in 0x%02" PRIx8, *in);
}if (in) { ... } else {
LOG_ERROR("%s no drscan data", __func__);
retval = ERROR_FAIL;
}else { ... }
return retval;
}{ ... }
static int save_context(struct target *t)
{
int err;
err = read_all_core_hw_regs(t);
if (err != ERROR_OK) {
LOG_ERROR("%s error reading regs", __func__);
return err;
}if (err != ERROR_OK) { ... }
return ERROR_OK;
}{ ... }
static int restore_context(struct target *t)
{
int err = ERROR_OK;
uint32_t i;
struct x86_32_common *x86_32 = target_to_x86_32(t);
err = write_all_core_hw_regs(t);
if (err != ERROR_OK) {
LOG_ERROR("%s error writing regs", __func__);
return err;
}if (err != ERROR_OK) { ... }
for (i = 0; i < (x86_32->cache->num_regs); i++) {
x86_32->cache->reg_list[i].dirty = false;
x86_32->cache->reg_list[i].valid = false;
}for (i = 0; i < (x86_32->cache->num_regs); i++) { ... }
return err;
}{ ... }
/* ... */
static int lakemont_get_core_reg(struct reg *reg)
{
int retval = ERROR_OK;
struct lakemont_core_reg *lakemont_reg = reg->arch_info;
struct target *t = lakemont_reg->target;
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
LOG_DEBUG("reg=%s, value=0x%08" PRIx32, reg->name,
buf_get_u32(reg->value, 0, 32));
return retval;
}{ ... }
static int lakemont_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct lakemont_core_reg *lakemont_reg = reg->arch_info;
struct target *t = lakemont_reg->target;
uint32_t value = buf_get_u32(buf, 0, 32);
LOG_DEBUG("reg=%s, newval=0x%08" PRIx32, reg->name, value);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
buf_set_u32(reg->value, 0, 32, value);
reg->dirty = true;
reg->valid = true;
return ERROR_OK;
}{ ... }
static const struct reg_arch_type lakemont_reg_type = {
/* ... */
.get = lakemont_get_core_reg,
.set = lakemont_set_core_reg,
...};
struct reg_cache *lakemont_build_reg_cache(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
int num_regs = ARRAY_SIZE(regs);
struct reg_cache **cache_p = register_get_last_cache_p(&t->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct lakemont_core_reg *arch_info = malloc(sizeof(struct lakemont_core_reg) * num_regs);
struct reg_feature *feature;
int i;
if (!cache || !reg_list || !arch_info) {
free(cache);
free(reg_list);
free(arch_info);
LOG_ERROR("%s out of memory", __func__);
return NULL;
}if (!cache || !reg_list || !arch_info) { ... }
cache->name = "lakemont registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
x86_32->cache = cache;
for (i = 0; i < num_regs; i++) {
arch_info[i].target = t;
arch_info[i].x86_32_common = x86_32;
arch_info[i].op = regs[i].op;
arch_info[i].pm_idx = regs[i].pm_idx;
reg_list[i].name = regs[i].name;
reg_list[i].size = 32;
reg_list[i].value = calloc(1, 4);
reg_list[i].dirty = false;
reg_list[i].valid = false;
reg_list[i].type = &lakemont_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].group = regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true;
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = regs[i].feature;
reg_list[i].feature = feature;
}if (feature) { ... } else
LOG_ERROR("%s unable to allocate feature list", __func__);
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type)
reg_list[i].reg_data_type->type = regs[i].type;
else
LOG_ERROR("%s unable to allocate reg type list", __func__);
}for (i = 0; i < num_regs; i++) { ... }
return cache;
}{ ... }
static uint32_t get_tapstatus(struct target *t)
{
scan.out[0] = TAPSTATUS;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return 0;
if (drscan(t, NULL, scan.out, TS_SIZE) != ERROR_OK)
return 0;
return buf_get_u32(scan.out, 0, 32);
}{ ... }
static int enter_probemode(struct target *t)
{
uint32_t tapstatus = 0;
int retries = 100;
tapstatus = get_tapstatus(t);
LOG_DEBUG("TS before PM enter = 0x%08" PRIx32, tapstatus);
if (tapstatus & TS_PM_BIT) {
LOG_DEBUG("core already in probemode");
return ERROR_OK;
}if (tapstatus & TS_PM_BIT) { ... }
scan.out[0] = PROBEMODE;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
scan.out[0] = 1;
if (drscan(t, scan.out, scan.in, 1) != ERROR_OK)
return ERROR_FAIL;
while (retries--) {
tapstatus = get_tapstatus(t);
LOG_DEBUG("TS after PM enter = 0x%08" PRIx32, tapstatus);
if ((tapstatus & TS_PM_BIT) && (!(tapstatus & TS_EN_PM_BIT)))
return ERROR_OK;
}while (retries--) { ... }
LOG_ERROR("%s PM enter error, tapstatus = 0x%08" PRIx32
, __func__, tapstatus);
return ERROR_FAIL;
}{ ... }
static int exit_probemode(struct target *t)
{
uint32_t tapstatus = get_tapstatus(t);
LOG_DEBUG("TS before PM exit = 0x%08" PRIx32, tapstatus);
if (!(tapstatus & TS_PM_BIT)) {
LOG_USER("core not in PM");
return ERROR_OK;
}if (!(tapstatus & TS_PM_BIT)) { ... }
scan.out[0] = PROBEMODE;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
scan.out[0] = 0;
if (drscan(t, scan.out, scan.in, 1) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}{ ... }
static int halt_prep(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (write_hw_reg(t, DSB, PM_DSB, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write %s 0x%08" PRIx32, regs[DSB].name, PM_DSB);
if (write_hw_reg(t, DSL, PM_DSL, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write %s 0x%08" PRIx32, regs[DSL].name, PM_DSL);
if (write_hw_reg(t, DSAR, PM_DSAR, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write DSAR 0x%08" PRIx32, PM_DSAR);
if (write_hw_reg(t, CSB, PM_DSB, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write %s 0x%08" PRIx32, regs[CSB].name, PM_DSB);
if (write_hw_reg(t, CSL, PM_DSL, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write %s 0x%08" PRIx32, regs[CSL].name, PM_DSL);
if (write_hw_reg(t, DR7, PM_DR7, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write DR7 0x%08" PRIx32, PM_DR7);
uint32_t eflags = buf_get_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32);
uint32_t csar = buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32);
uint32_t ssar = buf_get_u32(x86_32->cache->reg_list[SSAR].value, 0, 32);
uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
LOG_DEBUG("EFLAGS = 0x%08" PRIx32 ", VM86 = %d, IF = %d", eflags,
eflags & EFLAGS_VM86 ? 1 : 0,
eflags & EFLAGS_IF ? 1 : 0);
if ((eflags & EFLAGS_VM86) || (eflags & EFLAGS_IF)) {
x86_32->pm_regs[I(EFLAGS)] = eflags & ~(EFLAGS_VM86 | EFLAGS_IF);
if (write_hw_reg(t, EFLAGS, x86_32->pm_regs[I(EFLAGS)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("EFLAGS now = 0x%08" PRIx32 ", VM86 = %d, IF = %d",
x86_32->pm_regs[I(EFLAGS)],
x86_32->pm_regs[I(EFLAGS)] & EFLAGS_VM86 ? 1 : 0,
x86_32->pm_regs[I(EFLAGS)] & EFLAGS_IF ? 1 : 0);
}if ((eflags & EFLAGS_VM86) || (eflags & EFLAGS_IF)) { ... }
if (csar & CSAR_DPL) {
x86_32->pm_regs[I(CSAR)] = csar & ~CSAR_DPL;
if (write_hw_reg(t, CSAR, x86_32->pm_regs[I(CSAR)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write CSAR_CPL to 0 0x%08" PRIx32, x86_32->pm_regs[I(CSAR)]);
}if (csar & CSAR_DPL) { ... }
if (ssar & SSAR_DPL) {
x86_32->pm_regs[I(SSAR)] = ssar & ~SSAR_DPL;
if (write_hw_reg(t, SSAR, x86_32->pm_regs[I(SSAR)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write SSAR_CPL to 0 0x%08" PRIx32, x86_32->pm_regs[I(SSAR)]);
}if (ssar & SSAR_DPL) { ... }
if (!(x86_32->core_type == LMT3_5) && !(cr0 & CR0_CD)) {
LOG_DEBUG("caching enabled CR0 = 0x%08" PRIx32, cr0);
if (cr0 & CR0_PG) {
x86_32->pm_regs[I(CR0)] = cr0 & ~CR0_PG;
if (write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("cleared paging CR0_PG = 0x%08" PRIx32, x86_32->pm_regs[I(CR0)]);
if (submit_reg_pir(t, WBINVD) != ERROR_OK)
return ERROR_FAIL;
x86_32->pm_regs[I(CR0)] =
x86_32->pm_regs[I(CR0)] | (CR0_CD | CR0_NW | CR0_PG);
if (write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("set CD, NW and PG, CR0 = 0x%08" PRIx32, x86_32->pm_regs[I(CR0)]);
}if (cr0 & CR0_PG) { ... }
}if (!(x86_32->core_type == LMT3_5) && !(cr0 & CR0_CD)) { ... }
return ERROR_OK;
}{ ... }
static int do_halt(struct target *t)
{
t->state = TARGET_DEBUG_RUNNING;
if (enter_probemode(t) != ERROR_OK)
return ERROR_FAIL;
return lakemont_update_after_probemode_entry(t);
}{ ... }
int lakemont_update_after_probemode_entry(struct target *t)
{
if (save_context(t) != ERROR_OK)
return ERROR_FAIL;
if (halt_prep(t) != ERROR_OK)
return ERROR_FAIL;
t->state = TARGET_HALTED;
return target_call_event_callbacks(t, TARGET_EVENT_HALTED);
}{ ... }
static int do_resume(struct target *t)
{
t->state = TARGET_DEBUG_RUNNING;
if (restore_context(t) != ERROR_OK)
return ERROR_FAIL;
if (exit_probemode(t) != ERROR_OK)
return ERROR_FAIL;
t->state = TARGET_RUNNING;
t->debug_reason = DBG_REASON_NOTHALTED;
LOG_USER("target running");
return target_call_event_callbacks(t, TARGET_EVENT_RESUMED);
}{ ... }
static int read_all_core_hw_regs(struct target *t)
{
int err;
uint32_t regval;
unsigned i;
struct x86_32_common *x86_32 = target_to_x86_32(t);
for (i = 0; i < (x86_32->cache->num_regs); i++) {
if (regs[i].pm_idx == NOT_AVAIL_REG)
continue;
err = read_hw_reg(t, regs[i].id, ®val, 1);
if (err != ERROR_OK) {
LOG_ERROR("%s error saving reg %s",
__func__, x86_32->cache->reg_list[i].name);
return err;
}if (err != ERROR_OK) { ... }
}for (i = 0; i < (x86_32->cache->num_regs); i++) { ... }
LOG_DEBUG("read_all_core_hw_regs read %u registers ok", i);
return ERROR_OK;
}{ ... }
static int write_all_core_hw_regs(struct target *t)
{
int err;
unsigned i;
struct x86_32_common *x86_32 = target_to_x86_32(t);
for (i = 0; i < (x86_32->cache->num_regs); i++) {
if (regs[i].pm_idx == NOT_AVAIL_REG)
continue;
err = write_hw_reg(t, i, 0, 1);
if (err != ERROR_OK) {
LOG_ERROR("%s error restoring reg %s",
__func__, x86_32->cache->reg_list[i].name);
return err;
}if (err != ERROR_OK) { ... }
}for (i = 0; i < (x86_32->cache->num_regs); i++) { ... }
LOG_DEBUG("write_all_core_hw_regs wrote %u registers ok", i);
return ERROR_OK;
}{ ... }
static int read_hw_reg(struct target *t, int reg, uint32_t *regval, uint8_t cache)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct lakemont_core_reg *arch_info;
arch_info = x86_32->cache->reg_list[reg].arch_info;
x86_32->flush = 0;
if (submit_reg_pir(t, reg) != ERROR_OK)
return ERROR_FAIL;
if (submit_instruction_pir(t, SRAMACCESS) != ERROR_OK)
return ERROR_FAIL;
if (submit_instruction_pir(t, SRAM2PDR) != ERROR_OK)
return ERROR_FAIL;
x86_32->flush = 1;
scan.out[0] = RDWRPDR;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
if (drscan(t, NULL, scan.out, PDR_SIZE) != ERROR_OK)
return ERROR_FAIL;
jtag_add_sleep(DELAY_SUBMITPIR);
*regval = buf_get_u32(scan.out, 0, 32);
if (cache) {
buf_set_u32(x86_32->cache->reg_list[reg].value, 0, 32, *regval);
x86_32->cache->reg_list[reg].valid = true;
x86_32->cache->reg_list[reg].dirty = false;
}if (cache) { ... }
LOG_DEBUG("reg=%s, op=0x%016" PRIx64 ", val=0x%08" PRIx32,
x86_32->cache->reg_list[reg].name,
arch_info->op,
*regval);
return ERROR_OK;
}{ ... }
static int write_hw_reg(struct target *t, int reg, uint32_t regval, uint8_t cache)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct lakemont_core_reg *arch_info;
arch_info = x86_32->cache->reg_list[reg].arch_info;
uint8_t reg_buf[4];
if (cache)
regval = buf_get_u32(x86_32->cache->reg_list[reg].value, 0, 32);
buf_set_u32(reg_buf, 0, 32, regval);
LOG_DEBUG("reg=%s, op=0x%016" PRIx64 ", val=0x%08" PRIx32,
x86_32->cache->reg_list[reg].name,
arch_info->op,
regval);
x86_32->flush = 0;
if (submit_reg_pir(t, reg) != ERROR_OK)
return ERROR_FAIL;
if (submit_instruction_pir(t, SRAMACCESS) != ERROR_OK)
return ERROR_FAIL;
scan.out[0] = RDWRPDR;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
if (drscan(t, reg_buf, scan.out, PDR_SIZE) != ERROR_OK)
return ERROR_FAIL;
x86_32->flush = 1;
if (submit_instruction_pir(t, PDR2SRAM) != ERROR_OK)
return ERROR_FAIL;
if (cache) {
x86_32->cache->reg_list[reg].dirty = false;
x86_32->cache->reg_list[reg].valid = false;
}if (cache) { ... }
return ERROR_OK;
}{ ... }
static bool is_paging_enabled(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (x86_32->pm_regs[I(CR0)] & CR0_PG)
return true;
else
return false;
}{ ... }
static uint8_t get_num_user_regs(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
return x86_32->cache->num_regs;
}{ ... }
static int disable_paging(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
x86_32->pm_regs[I(CR0)] = x86_32->pm_regs[I(CR0)] & ~CR0_PG;
int err = x86_32->write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0);
if (err != ERROR_OK) {
LOG_ERROR("%s error disabling paging", __func__);
return err;
}if (err != ERROR_OK) { ... }
return err;
}{ ... }
static int enable_paging(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
x86_32->pm_regs[I(CR0)] = (x86_32->pm_regs[I(CR0)] | CR0_PG);
int err = x86_32->write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0);
if (err != ERROR_OK) {
LOG_ERROR("%s error enabling paging", __func__);
return err;
}if (err != ERROR_OK) { ... }
return err;
}{ ... }
static bool sw_bpts_supported(struct target *t)
{
uint32_t tapstatus = get_tapstatus(t);
if (tapstatus & TS_SBP_BIT)
return true;
else
return false;
}{ ... }
static int transaction_status(struct target *t)
{
uint32_t tapstatus = get_tapstatus(t);
if ((TS_EN_PM_BIT | TS_PRDY_BIT) & tapstatus) {
LOG_ERROR("%s transaction error tapstatus = 0x%08" PRIx32
, __func__, tapstatus);
return ERROR_FAIL;
}if ((TS_EN_PM_BIT | TS_PRDY_BIT) & tapstatus) { ... } else {
return ERROR_OK;
}else { ... }
}{ ... }
static int submit_instruction(struct target *t, int num)
{
int err = submit_instruction_pir(t, num);
if (err != ERROR_OK) {
LOG_ERROR("%s error submitting pir", __func__);
return err;
}if (err != ERROR_OK) { ... }
return err;
}{ ... }
static int submit_reg_pir(struct target *t, int num)
{
LOG_DEBUG("reg %s op=0x%016" PRIx64, regs[num].name, regs[num].op);
int err = submit_pir(t, regs[num].op);
if (err != ERROR_OK) {
LOG_ERROR("%s error submitting pir", __func__);
return err;
}if (err != ERROR_OK) { ... }
return err;
}{ ... }
static int submit_instruction_pir(struct target *t, int num)
{
LOG_DEBUG("%s op=0x%016" PRIx64, instructions[num].name,
instructions[num].op);
int err = submit_pir(t, instructions[num].op);
if (err != ERROR_OK) {
LOG_ERROR("%s error submitting pir", __func__);
return err;
}if (err != ERROR_OK) { ... }
return err;
}{ ... }
/* ... */
static int submit_pir(struct target *t, uint64_t op)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
uint8_t op_buf[8];
buf_set_u64(op_buf, 0, 64, op);
int flush = x86_32->flush;
x86_32->flush = 0;
scan.out[0] = WRPIR;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
if (drscan(t, op_buf, scan.out, PIR_SIZE) != ERROR_OK)
return ERROR_FAIL;
scan.out[0] = SUBMITPIR;
x86_32->flush = flush;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
jtag_add_sleep(DELAY_SUBMITPIR);
return ERROR_OK;
}{ ... }
int lakemont_init_target(struct command_context *cmd_ctx, struct target *t)
{
lakemont_build_reg_cache(t);
t->state = TARGET_RUNNING;
t->debug_reason = DBG_REASON_NOTHALTED;
return ERROR_OK;
}{ ... }
int lakemont_init_arch_info(struct target *t, struct x86_32_common *x86_32)
{
x86_32->submit_instruction = submit_instruction;
x86_32->transaction_status = transaction_status;
x86_32->read_hw_reg = read_hw_reg;
x86_32->write_hw_reg = write_hw_reg;
x86_32->sw_bpts_supported = sw_bpts_supported;
x86_32->get_num_user_regs = get_num_user_regs;
x86_32->is_paging_enabled = is_paging_enabled;
x86_32->disable_paging = disable_paging;
x86_32->enable_paging = enable_paging;
return ERROR_OK;
}{ ... }
int lakemont_poll(struct target *t)
{
/* ... */
uint32_t ts = get_tapstatus(t);
if (ts == 0xFFFFFFFF && t->state != TARGET_DEBUG_RUNNING) {
LOG_ERROR("tapstatus invalid - scan_chain serialization or locked JTAG access issues");
/* ... */
t->state = TARGET_DEBUG_RUNNING;
return ERROR_OK;
}if (ts == 0xFFFFFFFF && t->state != TARGET_DEBUG_RUNNING) { ... }
if (t->state == TARGET_HALTED && (!(ts & TS_PM_BIT))) {
LOG_INFO("target running for unknown reason");
t->state = TARGET_RUNNING;
}if (t->state == TARGET_HALTED && (!(ts & TS_PM_BIT))) { ... }
if (t->state == TARGET_RUNNING &&
t->state != TARGET_DEBUG_RUNNING) {
if ((ts & TS_PM_BIT) && (ts & TS_PMCR_BIT)) {
LOG_DEBUG("redirect to PM, tapstatus=0x%08" PRIx32, get_tapstatus(t));
t->state = TARGET_DEBUG_RUNNING;
if (save_context(t) != ERROR_OK)
return ERROR_FAIL;
if (halt_prep(t) != ERROR_OK)
return ERROR_FAIL;
t->state = TARGET_HALTED;
t->debug_reason = DBG_REASON_UNDEFINED;
struct x86_32_common *x86_32 = target_to_x86_32(t);
uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
uint32_t dr6 = buf_get_u32(x86_32->cache->reg_list[DR6].value, 0, 32);
uint32_t hwbreakpoint = (uint32_t)-1;
if (dr6 & DR6_BRKDETECT_0)
hwbreakpoint = 0;
if (dr6 & DR6_BRKDETECT_1)
hwbreakpoint = 1;
if (dr6 & DR6_BRKDETECT_2)
hwbreakpoint = 2;
if (dr6 & DR6_BRKDETECT_3)
hwbreakpoint = 3;
if (hwbreakpoint != (uint32_t)-1) {
uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
uint32_t type = dr7 & (0x03 << (DR7_RW_SHIFT + hwbreakpoint*DR7_RW_LEN_SIZE));
if (type == DR7_BP_EXECUTE) {
LOG_USER("hit hardware breakpoint (hwreg=%" PRIu32 ") at 0x%08" PRIx32, hwbreakpoint, eip);
}if (type == DR7_BP_EXECUTE) { ... } else {
uint32_t address = 0;
switch (hwbreakpoint) {
default:
case 0:
address = buf_get_u32(x86_32->cache->reg_list[DR0].value, 0, 32);
break;case 0:
case 1:
address = buf_get_u32(x86_32->cache->reg_list[DR1].value, 0, 32);
break;case 1:
case 2:
address = buf_get_u32(x86_32->cache->reg_list[DR2].value, 0, 32);
break;case 2:
case 3:
address = buf_get_u32(x86_32->cache->reg_list[DR3].value, 0, 32);
break;case 3:
}switch (hwbreakpoint) { ... }
LOG_USER("hit '%s' watchpoint for 0x%08" PRIx32 " (hwreg=%" PRIu32 ") at 0x%08" PRIx32,
type == DR7_BP_WRITE ? "write" : "access", address,
hwbreakpoint, eip);
}else { ... }
t->debug_reason = DBG_REASON_BREAKPOINT;
}if (hwbreakpoint != (uint32_t)-1) { ... } else {
/* ... */
struct breakpoint *bp = NULL;
bp = breakpoint_find(t, eip-1);
if (bp) {
t->debug_reason = DBG_REASON_BREAKPOINT;
if (bp->type == BKPT_SOFT) {
/* ... */
buf_set_u32(x86_32->cache->reg_list[EIP].value, 0, 32, eip-1);
x86_32->cache->reg_list[EIP].dirty = true;
x86_32->cache->reg_list[EIP].valid = true;
LOG_USER("hit software breakpoint at 0x%08" PRIx32, eip-1);
}if (bp->type == BKPT_SOFT) { ... } else {
/* ... */
LOG_USER("hit unknown breakpoint at 0x%08" PRIx32, eip);
}else { ... }
}if (bp) { ... } else {
/* ... */
LOG_USER("unknown break reason at 0x%08" PRIx32, eip);
}else { ... }
}else { ... }
return target_call_event_callbacks(t, TARGET_EVENT_HALTED);
}if ((ts & TS_PM_BIT) && (ts & TS_PMCR_BIT)) { ... }
}if (t->state == TARGET_RUNNING && t->state != TARGET_DEBUG_RUNNING) { ... }
return ERROR_OK;
}{ ... }
int lakemont_arch_state(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_USER("target halted due to %s at 0x%08" PRIx32 " in %s mode",
debug_reason_name(t),
buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32),
(buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32) & CR0_PE) ? "protected" : "real");
return ERROR_OK;
}{ ... }
int lakemont_halt(struct target *t)
{
if (t->state == TARGET_RUNNING) {
t->debug_reason = DBG_REASON_DBGRQ;
if (do_halt(t) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}if (t->state == TARGET_RUNNING) { ... } else {
LOG_ERROR("%s target not running", __func__);
return ERROR_FAIL;
}else { ... }
}{ ... }
int lakemont_resume(struct target *t, int current, target_addr_t address,
int handle_breakpoints, int debug_execution)
{
struct breakpoint *bp = NULL;
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
if (t->state == TARGET_HALTED) {
uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
bp = breakpoint_find(t, eip);
if (bp ) {
if (lakemont_step(t, 0, 0, 1) != ERROR_OK) {
LOG_ERROR("%s stepping over a software breakpoint at 0x%08" PRIx32 " "
"failed to resume the target", __func__, eip);
return ERROR_FAIL;
}if (lakemont_step(t, 0, 0, 1) != ERROR_OK) { ... }
}if (bp /*&& bp->type == BKPT_SOFT*/) { ... }
struct breakpoint *activeswbp = t->breakpoints;
while (activeswbp && !activeswbp->is_set)
activeswbp = activeswbp->next;
struct watchpoint *activehwbp = t->watchpoints;
while (activehwbp && !activehwbp->is_set)
activehwbp = activehwbp->next;
if (activeswbp || activehwbp)
buf_set_u32(x86_32->cache->reg_list[PMCR].value, 0, 32, 1);
if (do_resume(t) != ERROR_OK)
return ERROR_FAIL;
}if (t->state == TARGET_HALTED) { ... } else {
LOG_USER("target not halted");
return ERROR_FAIL;
}else { ... }
return ERROR_OK;
}{ ... }
int lakemont_step(struct target *t, int current,
target_addr_t address, int handle_breakpoints)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
uint32_t eflags = buf_get_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32);
uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
uint32_t pmcr = buf_get_u32(x86_32->cache->reg_list[PMCR].value, 0, 32);
struct breakpoint *bp = NULL;
int retval = ERROR_OK;
uint32_t tapstatus = 0;
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
bp = breakpoint_find(t, eip);
if (retval == ERROR_OK && bp) {
/* ... */
retval = x86_32_common_remove_breakpoint(t, bp);
}if (retval == ERROR_OK && bp/*&& bp->type == BKPT_SOFT*/) { ... }
LOG_DEBUG("modifying PMCR = 0x%08" PRIx32 " and EFLAGS = 0x%08" PRIx32, pmcr, eflags);
eflags = eflags | (EFLAGS_TF | EFLAGS_RF);
buf_set_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32, eflags);
buf_set_u32(x86_32->cache->reg_list[PMCR].value, 0, 32, 1);
LOG_DEBUG("EFLAGS [TF] [RF] bits set=0x%08" PRIx32 ", PMCR=0x%08" PRIx32 ", EIP=0x%08" PRIx32,
eflags, pmcr, eip);
get_tapstatus(t);
t->debug_reason = DBG_REASON_SINGLESTEP;
t->state = TARGET_DEBUG_RUNNING;
if (restore_context(t) != ERROR_OK)
return ERROR_FAIL;
if (exit_probemode(t) != ERROR_OK)
return ERROR_FAIL;
target_call_event_callbacks(t, TARGET_EVENT_RESUMED);
tapstatus = get_tapstatus(t);
if (tapstatus & (TS_PM_BIT | TS_EN_PM_BIT | TS_PRDY_BIT | TS_PMCR_BIT)) {
if (save_context(t) != ERROR_OK)
return ERROR_FAIL;
if (halt_prep(t) != ERROR_OK)
return ERROR_FAIL;
t->state = TARGET_HALTED;
LOG_USER("step done from EIP 0x%08" PRIx32 " to 0x%08" PRIx32, eip,
buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32));
target_call_event_callbacks(t, TARGET_EVENT_HALTED);
}if (tapstatus & (TS_PM_BIT | TS_EN_PM_BIT | TS_PRDY_BIT | TS_PMCR_BIT)) { ... } else {
/* ... */
LOG_ERROR("%s target didn't stop after executing a single step", __func__);
t->state = TARGET_RUNNING;
return ERROR_FAIL;
}else { ... }
/* ... */
if (bp) {
/* ... */
retval = x86_32_common_add_breakpoint(t, bp);
}if (bp/*&& bp->type == BKPT_SOFT*/) { ... }
return retval;
}{ ... }
static int lakemont_reset_break(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct jtag_tap *saved_tap = x86_32->curr_tap;
struct scan_field *fields = &scan.field;
int retval = ERROR_OK;
LOG_DEBUG("issuing port 0xcf9 reset");
x86_32->curr_tap = jtag_tap_by_position(1);
if (!x86_32->curr_tap) {
x86_32->curr_tap = saved_tap;
LOG_ERROR("%s could not select quark_x10xx.cltap", __func__);
return ERROR_FAIL;
}if (!x86_32->curr_tap) { ... }
fields->in_value = NULL;
fields->num_bits = 8;
scan.out[0] = 0x51;
fields->out_value = ((uint8_t *)scan.out);
jtag_add_ir_scan(x86_32->curr_tap, fields, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
x86_32->curr_tap = saved_tap;
LOG_ERROR("%s irscan failed to execute queue", __func__);
return retval;
}if (retval != ERROR_OK) { ... }
scan.out[0] = 0x06;
fields->out_value = ((uint8_t *)scan.out);
jtag_add_dr_scan(x86_32->curr_tap, 1, fields, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("%s drscan failed to execute queue", __func__);
x86_32->curr_tap = saved_tap;
return retval;
}if (retval != ERROR_OK) { ... }
x86_32->curr_tap = saved_tap;
return ERROR_OK;
}{ ... }
/* ... */
int lakemont_reset_assert(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
uint8_t cf9_reset_val = 0x6;
int retval;
LOG_DEBUG(" ");
if (t->state != TARGET_HALTED) {
LOG_DEBUG("target must be halted first");
retval = lakemont_halt(t);
if (retval != ERROR_OK) {
LOG_ERROR("could not halt target");
return retval;
}if (retval != ERROR_OK) { ... }
x86_32->forced_halt_for_reset = true;
}if (t->state != TARGET_HALTED) { ... }
if (t->reset_halt) {
retval = lakemont_reset_break(t);
if (retval != ERROR_OK)
return retval;
}if (t->reset_halt) { ... }
retval = x86_32_common_write_io(t, 0xcf9, BYTE, &cf9_reset_val);
if (retval != ERROR_OK) {
LOG_ERROR("could not write to port 0xcf9");
return retval;
}if (retval != ERROR_OK) { ... }
if (!t->reset_halt && x86_32->forced_halt_for_reset) {
x86_32->forced_halt_for_reset = false;
retval = lakemont_resume(t, true, 0x00, false, true);
if (retval != ERROR_OK)
return retval;
}if (!t->reset_halt && x86_32->forced_halt_for_reset) { ... }
x86_32_common_reset_breakpoints_watchpoints(t);
return ERROR_OK;
}{ ... }
int lakemont_reset_deassert(struct target *t)
{
int retval;
LOG_DEBUG(" ");
if (target_was_examined(t)) {
retval = lakemont_poll(t);
if (retval != ERROR_OK)
return retval;
}if (target_was_examined(t)) { ... }
if (t->reset_halt) {
retval = lakemont_update_after_probemode_entry(t);
if (retval != ERROR_OK) {
LOG_ERROR("could not update state after probemode entry");
return retval;
}if (retval != ERROR_OK) { ... }
if (t->state != TARGET_HALTED) {
LOG_WARNING("%s: ran after reset and before halt ...",
target_name(t));
if (target_was_examined(t)) {
retval = target_halt(t);
if (retval != ERROR_OK)
return retval;
}if (target_was_examined(t)) { ... } else {
t->state = TARGET_UNKNOWN;
}else { ... }
}if (t->state != TARGET_HALTED) { ... }
}if (t->reset_halt) { ... }
return ERROR_OK;
}{ ... }