1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
183
184
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
228
229
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
254
255
256
257
258
262
263
264
273
274
275
276
277
278
279
280
281
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
341
342
343
344
345
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
496
497
498
499
500
508
509
510
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
540
541
546
547
548
549
550
554
555
556
559
560
565
566
567
568
569
573
574
579
580
581
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
654
655
660
661
673
674
675
676
677
678
679
680
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
713
714
717
720
723
726
729
730
731
732
733
734
736
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
774
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
831
832
833
834
835
836
837
838
839
840
846
847
848
849
850
851
852
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
881
882
883
884
885
889
893
897
901
905
909
912
913
914
915
916
917
918
919
920
921
922
923
924
925
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
966
967
968
969
970
971
972
973
974
983
984
985
986
987
988
989
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1087
1088
1089
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1115
1116
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
/* ... */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* ... */
/* ... */
#define FLASH_ERASE_TIMEOUT 250
const uint32_t regaddr[2][13] = {
{
0x40022000,
0x40022000,
0x40022008,
0x4002200c,
0x40022010,
0x40022014,
0x40022020,
0x4002202c,
0x40022030,
0x4002204c,
0x40022050,
0xE0042000,
0x1FFF75E0,
...},
{
0x40022000,
0x40022000,
0x40022008,
0x40022010,
0x40022020,
0x40022028,
0x40022040,
0x40022058,
0x4002205c,
0x40022068,
0x4002206c,
0xE0044000,
0x0BFA05E0,
...}
...};
#define STM32_FLASH_BASE 0
#define STM32_FLASH_ACR 1
#define STM32_FLASH_KEYR 2
#define STM32_FLASH_OPTKEYR 3
#define STM32_FLASH_SR 4
#define STM32_FLASH_CR 5
#define STM32_FLASH_OPTR 6
#define STM32_FLASH_WRP1AR 7
#define STM32_FLASH_WRP1BR 8
#define STM32_FLASH_WRP2AR 9
#define STM32_FLASH_WRP2BR 10
#define STM32_DBGMCU_IDCODE 11
#define STM32_FLASH_SIZE_REG 12
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER1 (1 << 2)
#define FLASH_PAGE_SHIFT 3
#define FLASH_CR_BKER (1 << 11)
#define FLASH_MER2 (1 << 15)
#define FLASH_STRT (1 << 16)
#define FLASH_OPTSTRT (1 << 17)
#define FLASH_EOPIE (1 << 24)
#define FLASH_ERRIE (1 << 25)
#define FLASH_OBLLAUNCH (1 << 27)
#define FLASH_OPTLOCK (1 << 30)
#define FLASH_LOCK (1 << 31)
#define FLASH_BSY (1 << 16)
#define FLASH_PGSERR (1 << 7)
#define FLASH_SIZERR (1 << 6)
#define FLASH_PGAERR (1 << 5)
#define FLASH_WRPERR (1 << 4)
#define FLASH_PROGERR (1 << 3)
#define FLASH_OPERR (1 << 1)
#define FLASH_EOP (1 << 0)
#define FLASH_ERROR (FLASH_PGSERR | FLASH_SIZERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
#define OPT_DBANK_C_256K (1 << 21)
#define OPT_DBANK_E_512K (1 << 22)
#define OPT_DBANK_LE_1M (1 << 21)
#define OPT_DBANK_GE_2M (1 << 22)
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
#define RDP_LEVEL_0 0xAA
#define RDP_LEVEL_1 0xBB
#define RDP_LEVEL_2 0xCC
#define STM32_FAMILY_L4 0
#define STM32_FAMILY_L5 1
48 defines
struct stm32l4_flash_bank {
uint16_t bank2_start;
int probed;
int family;
...};
/* ... */
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
struct stm32l4_flash_bank *stm32l4_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
if (!stm32l4_info)
return ERROR_FAIL;
bank->driver_priv = stm32l4_info;
stm32l4_info->probed = 0;
stm32l4_info->family = STM32_FAMILY_L4;
return ERROR_OK;
}{ ... }
FLASH_BANK_COMMAND_HANDLER(stm32l5_flash_bank_command)
{
struct stm32l4_flash_bank *stm32l4_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
if (!stm32l4_info)
return ERROR_FAIL;
bank->driver_priv = stm32l4_info;
stm32l4_info->probed = 0;
stm32l4_info->family = STM32_FAMILY_L5;
return ERROR_OK;
}{ ... }
static inline int stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return regaddr[stm32l4_info->family][reg];
}{ ... }
static inline int stm32l4_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), status);
}{ ... }
static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
for (;;) {
retval = stm32l4_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}if (timeout-- <= 0) { ... }
alive_sleep(1);
}for (;;) { ... }
if (status & FLASH_WRPERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}if (status & FLASH_WRPERR) { ... }
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* ... */
target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR),
status & FLASH_ERROR);
}if (status & FLASH_ERROR) { ... }
return retval;
}{ ... }
static int stm32l4_unlock_reg(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t ctrl;
/* ... */
int retval = target_read_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}if (ctrl & FLASH_LOCK) { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t ctrl;
int retval = target_read_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_OPTLOCK) == 0)
return ERROR_OK;
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_OPTKEYR), OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_OPTKEYR), OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_OPTLOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}if (ctrl & FLASH_OPTLOCK) { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_read_option(struct flash_bank *bank, uint32_t address, uint32_t* value)
{
struct target *target = bank->target;
return target_read_u32(target, stm32l4_get_flash_reg(bank, address), value);
}{ ... }
static int stm32l4_write_option(struct flash_bank *bank, uint32_t address, uint32_t value, uint32_t mask)
{
struct target *target = bank->target;
uint32_t optiondata;
int retval = target_read_u32(target, stm32l4_get_flash_reg(bank, address), &optiondata);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_unlock_option_reg(bank);
if (retval != ERROR_OK)
return retval;
optiondata = (optiondata & ~mask) | (value & mask);
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, address), optiondata);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OPTSTRT);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
return retval;
}{ ... }
static int stm32l4_protect_check(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
stm32l4_read_option(bank, STM32_FLASH_WRP1AR, &wrp1ar);
stm32l4_read_option(bank, STM32_FLASH_WRP1BR, &wrp1br);
stm32l4_read_option(bank, STM32_FLASH_WRP2AR, &wrp2ar);
stm32l4_read_option(bank, STM32_FLASH_WRP2BR, &wrp2br);
const uint8_t wrp1a_start = wrp1ar & 0xFF;
const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF;
const uint8_t wrp1b_start = wrp1br & 0xFF;
const uint8_t wrp1b_end = (wrp1br >> 16) & 0xFF;
const uint8_t wrp2a_start = wrp2ar & 0xFF;
const uint8_t wrp2a_end = (wrp2ar >> 16) & 0xFF;
const uint8_t wrp2b_start = wrp2br & 0xFF;
const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF;
for (int i = 0; i < bank->num_sectors; i++) {
if (i < stm32l4_info->bank2_start) {
if (((i >= wrp1a_start) &&
(i <= wrp1a_end)) ||
((i >= wrp1b_start) &&
(i <= wrp1b_end)))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}if (i < stm32l4_info->bank2_start) { ... } else {
uint8_t snb;
snb = i - stm32l4_info->bank2_start;
if (((snb >= wrp2a_start) &&
(snb <= wrp2a_end)) ||
((snb >= wrp2b_start) &&
(snb <= wrp2b_end)))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}else { ... }
}for (int i = 0; i < bank->num_sectors; i++) { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_erase(struct flash_bank *bank, unsigned first, unsigned last)
{
struct target *target = bank->target;
int i;
assert(first < bank->num_sectors);
assert(last < bank->num_sectors);
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
int retval;
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
/* ... */
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
for (i = first; i <= last; i++) {
uint32_t erase_flags;
erase_flags = FLASH_PER | FLASH_STRT;
if (i >= stm32l4_info->bank2_start) {
uint8_t snb;
snb = i - stm32l4_info->bank2_start;
erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
}if (i >= stm32l4_info->bank2_start) { ... } else
erase_flags |= i << FLASH_PAGE_SHIFT;
retval = target_write_u32(target,
stm32l4_get_flash_reg(bank, STM32_FLASH_CR), erase_flags);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}for (i = first; i <= last; i++) { ... }
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}{ ... }
static int stm32l4_protect(struct flash_bank *bank, int set, unsigned first, unsigned last)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
int ret = ERROR_OK;
uint32_t reg_value = 0xFF;
if (last >= stm32l4_info->bank2_start) {
if (set == 1) {
uint8_t begin = first > stm32l4_info->bank2_start ? first : 0x00;
reg_value = ((last & 0xFF) << 16) | begin;
}if (set == 1) { ... }
ret = stm32l4_write_option(bank, STM32_FLASH_WRP2AR, reg_value, 0xffffffff);
}if (last >= stm32l4_info->bank2_start) { ... }
reg_value = 0xFF;
if (first < stm32l4_info->bank2_start) {
if (set == 1) {
uint8_t end = last >= stm32l4_info->bank2_start ? 0xFF : last;
reg_value = (end << 16) | (first & 0xFF);
}if (set == 1) { ... }
ret = stm32l4_write_option(bank, STM32_FLASH_WRP1AR, reg_value, 0xffffffff);
}if (first < stm32l4_info->bank2_start) { ... }
return ret;
}{ ... }
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
if (stm32l4_info->family == STM32_FAMILY_L4) {
static const uint8_t stm32l4_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
...};
if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code), &write_algorithm) != ERROR_OK) { ... }
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32l4_flash_write_code),
stm32l4_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}if (retval != ERROR_OK) { ... }
}if (stm32l4_info->family == STM32_FAMILY_L4) { ... } else if (stm32l4_info->family == STM32_FAMILY_L5) {
static const uint8_t stm32l5_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32l5x.inc"
...};
if (target_alloc_working_area(target, sizeof(stm32l5_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (target_alloc_working_area(target, sizeof(stm32l5_flash_write_code), &write_algorithm) != ERROR_OK) { ... }
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32l5_flash_write_code),
stm32l5_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}if (retval != ERROR_OK) { ... }
}else if (stm32l4_info->family == STM32_FAMILY_L5) { ... } else {
LOG_ERROR("unknown STM32 family.");
return ERROR_TARGET_INVALID;
}else { ... }
while (target_alloc_working_area_try(target, buffer_size, &source) !=
ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* ... */
target_free_working_area(target, write_algorithm);
LOG_WARNING("large enough working area not available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (buffer_size <= 256) { ... }
}while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { ... }
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_OUT);
init_reg_param(®_params[4], "r4", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count / 4);
buf_set_u32(reg_params[4].value, 0, 32, stm32l4_get_flash_reg(bank, STM32_FLASH_BASE));
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32l4 flash write algorithm");
uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
if (error & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if (error != 0) {
LOG_ERROR("flash write failed = %08" PRIx32, error);
target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), error);
retval = ERROR_FAIL;
}if (error != 0) { ... }
}if (retval == ERROR_FLASH_OPERATION_FAILED) { ... }
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
return retval;
}{ ... }
static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
if (offset & 0x7) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 8-byte alignment",
offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}if (offset & 0x7) { ... }
if (count & 0x7) {
LOG_WARNING("Padding %d bytes to keep 8-byte write size",
count & 7);
count = (count + 7) & ~7;
/* ... */
}if (count & 0x7) { ... }
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_block(bank, buffer, offset, count / 2);
if (retval != ERROR_OK) {
LOG_WARNING("block write failed");
return retval;
}if (retval != ERROR_OK) { ... }
LOG_WARNING("block write succeeded");
return target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
}{ ... }
static int stm32l4_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int i;
uint16_t flash_size_in_kb = 0xffff;
uint16_t max_flash_size_in_kb;
uint32_t device_id;
uint32_t options;
uint32_t base_address = 0x08000000;
stm32l4_info->probed = 0;
int retval = target_read_u32(target, stm32l4_get_flash_reg(bank, STM32_DBGMCU_IDCODE), &device_id);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
switch (device_id & 0xfff) {
case 0x470:
max_flash_size_in_kb = 2048;
break;case 0x470:
case 0x461:
case 0x415:
max_flash_size_in_kb = 1024;
break;case 0x415:
case 0x462:
max_flash_size_in_kb = 512;
break;case 0x462:
case 0x435:
max_flash_size_in_kb = 256;
break;case 0x435:
case 0x472:
max_flash_size_in_kb = 512;
break;case 0x472:
default:
LOG_WARNING("Cannot identify target as an STM32L4 family device.");
return ERROR_FAIL;default
}switch (device_id & 0xfff) { ... }
retval = target_read_u16(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SIZE_REG), &flash_size_in_kb);
/* ... */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { ... }
LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);
retval = target_read_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_OPTR), &options);
if (retval != ERROR_OK)
return retval;
int num_pages = 0;
int page_size = 0;
switch (device_id & 0xfff) {
case 0x472:
/* ... */
if (flash_size_in_kb == 512) {
stm32l4_info->bank2_start = 128;
if (options & OPT_DBANK_E_512K) {
page_size = 2048;
num_pages = 256;
}if (options & OPT_DBANK_E_512K) { ... } else {
page_size = 4096;
num_pages = 128;
}else { ... }
break;
}if (flash_size_in_kb == 512) { ... }
LOG_WARNING("Invalid flash size for STM32L5 family device.");
return ERROR_FAIL;case 0x472:
case 0x470:
/* ... */
if (flash_size_in_kb == 2048) {
stm32l4_info->bank2_start = 256;
if (options & OPT_DBANK_GE_2M) {
page_size = 4096;
num_pages = 512;
}if (options & OPT_DBANK_GE_2M) { ... } else {
page_size = 8192;
num_pages = 256;
}else { ... }
break;
}if (flash_size_in_kb == 2048) { ... }
if (flash_size_in_kb == 1024) {
stm32l4_info->bank2_start = 128;
if (options & OPT_DBANK_LE_1M) {
page_size = 4096;
num_pages = 256;
}if (options & OPT_DBANK_LE_1M) { ... } else {
page_size = 8192;
num_pages = 128;
}else { ... }
break;
}if (flash_size_in_kb == 1024) { ... }
LOG_WARNING("Invalid flash size for STM32L4+ family device.");
return ERROR_FAIL;case 0x470:
case 0x461:
case 0x415:
page_size = 2048;
num_pages = flash_size_in_kb / 2;
assert(num_pages > 0);
if ((flash_size_in_kb == 1024) || !(options & OPT_DBANK_LE_1M))
stm32l4_info->bank2_start = 256;
else
stm32l4_info->bank2_start = num_pages / 2;
break;case 0x415:
case 0x462:
case 0x435:
default:
page_size = 2048;
num_pages = flash_size_in_kb / 2;
assert(num_pages > 0);
stm32l4_info->bank2_start = UINT16_MAX;
break;default
}switch (device_id & 0xfff) { ... }
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}if (bank->sectors) { ... }
bank->base = base_address;
bank->size = num_pages * page_size;
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
if (!bank->sectors)
return ERROR_FAIL;
for (i = 0; i < num_pages; i++) {
bank->sectors[i].offset = i * page_size;
bank->sectors[i].size = page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}for (i = 0; i < num_pages; i++) { ... }
stm32l4_info->probed = 1;
return ERROR_OK;
}{ ... }
static int stm32l4_auto_probe(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_info->probed)
return ERROR_OK;
return stm32l4_probe(bank);
}{ ... }
static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct target *target = bank->target;
uint32_t dbgmcu_idcode;
int retval = target_read_u32(target, stm32l4_get_flash_reg(bank, STM32_DBGMCU_IDCODE), &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint8_t rev_id = dbgmcu_idcode >> 28;
uint8_t rev_minor = 0;
int i;
for (i = 16; i < 28; i++) {
if (dbgmcu_idcode & (1 << i))
rev_minor++;
else
break;
}for (i = 16; i < 28; i++) { ... }
const char *device_str;
switch (device_id) {
case 0x470:
device_str = "STM32L4R/4Sxx";
break;
case 0x470:
case 0x461:
device_str = "STM32L496/4A6";
break;
case 0x461:
case 0x415:
device_str = "STM32L475/476/486";
break;
case 0x415:
case 0x462:
device_str = "STM32L45x/46x";
break;
case 0x462:
case 0x435:
device_str = "STM32L43x/44x";
break;
case 0x435:
case 0x472:
device_str = "STM32L552/562";
break;
case 0x472:
default:
command_print(cmd, "Cannot identify target as a STM32L4\n");
return ERROR_FAIL;default
}switch (device_id) { ... }
command_print(cmd, "%s - Rev: %1d.%02d",
device_str, rev_id, rev_minor);
return ERROR_OK;
}{ ... }
static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
{
int retval;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), action);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR),
action | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
int i;
uint32_t action;
if (CMD_ARGC < 1) {
command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
return ERROR_COMMAND_SYNTAX_ERROR;
}if (CMD_ARGC < 1) { ... }
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
action = FLASH_MER1 | FLASH_MER2;
retval = stm32l4_mass_erase(bank, action);
if (retval == ERROR_OK) {
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD, "stm32l4x mass erase complete");
}if (retval == ERROR_OK) { ... } else {
command_print(CMD, "stm32l4x mass erase failed");
}else { ... }
return retval;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_option_read_command)
{
if (CMD_ARGC < 2) {
command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
return ERROR_COMMAND_SYNTAX_ERROR;
}if (CMD_ARGC < 2) { ... }
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t reg_addr = STM32_FLASH_BASE;
uint32_t value = 0;
reg_addr += strtoul(CMD_ARGV[1], NULL, 16);
retval = stm32l4_read_option(bank, reg_addr, &value);
if (ERROR_OK != retval)
return retval;
command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
return retval;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_option_write_command)
{
if (CMD_ARGC < 3) {
command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
return ERROR_COMMAND_SYNTAX_ERROR;
}if (CMD_ARGC < 3) { ... }
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t reg_addr = STM32_FLASH_BASE;
uint32_t value = 0;
uint32_t mask = 0xFFFFFFFF;
reg_addr += strtoul(CMD_ARGV[1], NULL, 16);
value = strtoul(CMD_ARGV[2], NULL, 16);
if (CMD_ARGC > 3)
mask = strtoul(CMD_ARGV[3], NULL, 16);
command_print(CMD, "%s Option written.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
retval = stm32l4_write_option(bank, reg_addr, value, mask);
return retval;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_option_load_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct target *target = bank->target;
retval = stm32l4_unlock_reg(bank);
if (ERROR_OK != retval)
return retval;
retval = stm32l4_unlock_option_reg(bank);
if (ERROR_OK != retval)
return retval;
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBLLAUNCH);
command_print(CMD, "stm32l4x option load (POR) completed.");
return retval;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_lock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
if (stm32l4_write_option(bank, STM32_FLASH_OPTR, 0, 0x000000FF) != ERROR_OK) {
command_print(CMD, "%s failed to lock device", bank->driver->name);
return ERROR_OK;
}if (stm32l4_write_option(bank, STM32_FLASH_OPTR, 0, 0x000000FF) != ERROR_OK) { ... }
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
if (stm32l4_write_option(bank, STM32_FLASH_OPTR, RDP_LEVEL_0, 0x000000FF) != ERROR_OK) {
command_print(CMD, "%s failed to unlock device", bank->driver->name);
return ERROR_OK;
}if (stm32l4_write_option(bank, STM32_FLASH_OPTR, RDP_LEVEL_0, 0x000000FF) != ERROR_OK) { ... }
return ERROR_OK;
}{ ... }
static const struct command_registration stm32l4_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32l4_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
...},
{
.name = "unlock",
.handler = stm32l4_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
...},
{
.name = "mass_erase",
.handler = stm32l4_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
...},
{
.name = "option_read",
.handler = stm32l4_handle_option_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset",
.help = "Read & Display device option bytes.",
...},
{
.name = "option_write",
.handler = stm32l4_handle_option_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset value mask",
.help = "Write device option bit fields with provided value.",
...},
{
.name = "option_load",
.handler = stm32l4_handle_option_load_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Force re-load of device options (will cause device reset).",
...},
COMMAND_REGISTRATION_DONE
...};
static const struct command_registration stm32l5_command_handlers[] = {
{
.name = "stm32l5x",
.mode = COMMAND_ANY,
.help = "stm32l5x flash command group",
.usage = "",
.chain = stm32l4_exec_command_handlers,
...},
COMMAND_REGISTRATION_DONE
...};
const struct flash_driver stm32l5x_flash = {
.name = "stm32l5x",
.commands = stm32l5_command_handlers,
.flash_bank_command = stm32l5_flash_bank_command,
.erase = stm32l4_erase,
.protect = stm32l4_protect,
.write = stm32l4_write,
.read = default_flash_read,
.probe = stm32l4_probe,
.auto_probe = stm32l4_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32l4_protect_check,
.info = get_stm32l4_info,
.free_driver_priv = default_flash_free_driver_priv,
...};