1
2
3
10
11
12
13
14
15
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
85
86
91
92
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
122
123
128
129
130
131
132
133
134
135
136
137
138
139
141
142
143
144
145
146
148
149
150
151
152
153
154
155
156
157
158
160
161
162
163
164
165
166
167
168
169
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
270
271
272
273
274
275
276
277
278
279
280
281
282
283
286
287
290
291
292
295
296
299
300
303
304
307
308
311
312
315
316
319
320
323
324
327
328
331
332
335
336
340
341
344
345
348
349
352
353
356
357
361
362
365
366
369
370
373
374
377
378
381
382
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
718
719
720
738
739
746
747
748
749
755
756
757
758
764
765
766
767
768
769
770
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
825
826
827
828
829
830
835
836
837
842
843
847
848
849
854
855
859
860
861
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
885
886
887
888
892
893
894
902
903
904
905
906
907
908
909
910
911
912
913
919
920
921
922
923
924
925
926
930
931
932
933
934
937
938
939
940
945
946
947
948
949
955
956
957
958
959
960
961
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1042
1043
1044
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1244
1245
1249
1250
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1324
1325
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1344
1345
1347
1348
1349
1350
1351
1352
1353
1358
1359
1360
1367
1368
1369
1370
1371
1372
1377
1378
1379
1384
1385
1386
1390
1391
1392
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1410
1411
1415
1416
1417
1418
1419
1420
1421
1422
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1451
1452
1457
1458
1459
1460
1461
1465
1466
1467
1468
1469
1470
1471
1472
1473
1481
1482
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1615
1616
1620
1621
1622
1623
1624
1626
1627
1628
1629
1634
1635
1636
1637
1641
1642
1646
1647
1648
1649
1650
1653
1662
1663
1664
1665
1666
1675
1676
1677
1678
1679
1680
1681
1685
1686
1687
1688
1689
1690
1691
1692
1693
1698
1699
1700
1701
1702
1708
1709
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1729
1730
1733
1734
1735
1739
1740
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1799
1800
1801
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1821
1822
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1891
1892
1893
1894
1898
1899
1900
1901
1902
1904
1910
1911
1913
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1970
1971
1972
1973
1974
1975
1976
1977
1978
1983
1984
1985
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2030
2031
2032
2033
2034
2035
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2064
2065
2071
2072
2078
2079
2080
2081
2082
2083
2084
2086
2087
2088
2089
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2120
2121
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2140
2141
2142
2143
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2213
2214
2215
2216
2217
2218
2219
2223
2224
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2356
2357
2358
2359
2360
2361
2362
2363
2368
2369
2370
2371
2372
2376
2377
2385
2387
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2440
2441
2442
2443
2447
2448
2449
2450
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2475
2476
2477
2478
2482
2483
2484
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2547
2548
2549
2550
2551
2552
2553
2554
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
/* ... */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/align.h>
#include <helper/binarybuffer.h>
#include <helper/bits.h>
#include <target/algorithm.h>
#include <target/arm_adi_v5.h>
#include <target/cortex_m.h>
#include "stm32l4x.h"
8 includes
/* ... */
/* ... */
/* ... */
/* ... */
/* ... */
/* ... */
/* ... */
/* ... */
#define FLASH_ERASE_TIMEOUT 250
#define FLASH_WRITE_TIMEOUT 50
#define F_NONE 0
#define F_HAS_DUAL_BANK BIT(0)
/* ... */
#define F_USE_ALL_WRPXX BIT(1)
#define F_HAS_TZ BIT(2)
#define F_HAS_L5_FLASH_REGS BIT(3)
/* ... */
#define F_QUAD_WORD_PROG BIT(4)
8 defines
enum stm32l4_flash_reg_index {
STM32_FLASH_ACR_INDEX,
STM32_FLASH_KEYR_INDEX,
STM32_FLASH_OPTKEYR_INDEX,
STM32_FLASH_SR_INDEX,
STM32_FLASH_CR_INDEX,
/* ... */
STM32_FLASH_CR_WLK_INDEX,
STM32_FLASH_OPTR_INDEX,
STM32_FLASH_WRP1AR_INDEX,
STM32_FLASH_WRP1BR_INDEX,
STM32_FLASH_WRP2AR_INDEX,
STM32_FLASH_WRP2BR_INDEX,
STM32_FLASH_REG_INDEX_NUM,
...};
enum stm32l4_rdp {
RDP_LEVEL_0 = 0xAA,
RDP_LEVEL_0_5 = 0x55,
RDP_LEVEL_1 = 0x00,
RDP_LEVEL_2 = 0xCC
...};
static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008,
[STM32_FLASH_OPTKEYR_INDEX] = 0x00C,
[STM32_FLASH_SR_INDEX] = 0x010,
[STM32_FLASH_CR_INDEX] = 0x014,
[STM32_FLASH_OPTR_INDEX] = 0x020,
[STM32_FLASH_WRP1AR_INDEX] = 0x02C,
[STM32_FLASH_WRP1BR_INDEX] = 0x030,
[STM32_FLASH_WRP2AR_INDEX] = 0x04C,
[STM32_FLASH_WRP2BR_INDEX] = 0x050,
...};
static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008,
[STM32_FLASH_OPTKEYR_INDEX] = 0x010,
[STM32_FLASH_SR_INDEX] = 0x060,
[STM32_FLASH_CR_INDEX] = 0x064,
[STM32_FLASH_CR_WLK_INDEX] = 0x014,
[STM32_FLASH_OPTR_INDEX] = 0x020,
[STM32_FLASH_WRP1AR_INDEX] = 0x02C,
[STM32_FLASH_WRP1BR_INDEX] = 0x030,
...};
static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008,
[STM32_FLASH_OPTKEYR_INDEX] = 0x010,
[STM32_FLASH_SR_INDEX] = 0x020,
[STM32_FLASH_CR_INDEX] = 0x028,
[STM32_FLASH_OPTR_INDEX] = 0x040,
[STM32_FLASH_WRP1AR_INDEX] = 0x058,
[STM32_FLASH_WRP1BR_INDEX] = 0x05C,
[STM32_FLASH_WRP2AR_INDEX] = 0x068,
[STM32_FLASH_WRP2BR_INDEX] = 0x06C,
...};
static const uint32_t stm32l5_s_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x00C,
[STM32_FLASH_OPTKEYR_INDEX] = 0x010,
[STM32_FLASH_SR_INDEX] = 0x024,
[STM32_FLASH_CR_INDEX] = 0x02C,
[STM32_FLASH_OPTR_INDEX] = 0x040,
[STM32_FLASH_WRP1AR_INDEX] = 0x058,
[STM32_FLASH_WRP1BR_INDEX] = 0x05C,
[STM32_FLASH_WRP2AR_INDEX] = 0x068,
[STM32_FLASH_WRP2BR_INDEX] = 0x06C,
...};
struct stm32l4_rev {
const uint16_t rev;
const char *str;
...};
struct stm32l4_part_info {
uint16_t id;
const char *device_str;
const struct stm32l4_rev *revs;
const size_t num_revs;
const uint16_t max_flash_size_kb;
const uint32_t flags;
const uint32_t flash_regs_base;
const uint32_t fsize_addr;
const uint32_t otp_base;
const uint32_t otp_size;
...};
struct stm32l4_flash_bank {
bool probed;
uint32_t idcode;
unsigned int bank1_sectors;
bool dual_bank_mode;
int hole_sectors;
uint32_t user_bank_size;
uint32_t data_width;
uint32_t cr_bker_mask;
uint32_t sr_bsy_mask;
uint32_t wrpxxr_mask;
const struct stm32l4_part_info *part_info;
uint32_t flash_regs_base;
const uint32_t *flash_regs;
bool otp_enabled;
enum stm32l4_rdp rdp;
bool tzen;
uint32_t optr;
...};
enum stm32_bank_id {
STM32_BANK1,
STM32_BANK2,
STM32_ALL_BANKS
...};
struct stm32l4_wrp {
enum stm32l4_flash_reg_index reg_idx;
uint32_t value;
bool used;
int first;
int last;
int offset;
...};
static const char *device_families = "STM32C0/G0/G4/L4/L4+/L5/U5/WB/WL";
static const struct stm32l4_rev stm32l47_l48xx_revs[] = {
{ 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
...};
static const struct stm32l4_rev stm32l43_l44xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
...};
static const struct stm32l4_rev stm32c01xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" },
...};
static const struct stm32l4_rev stm32c03xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" },
...};
static const struct stm32l4_rev stm32g05_g06xx_revs[] = {
{ 0x1000, "A" },
...};
static const struct stm32l4_rev stm32_g07_g08xx_revs[] = {
{ 0x1000, "A/Z" } , { 0x2000, "B" },
...};
static const struct stm32l4_rev stm32l49_l4axx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" },
...};
static const struct stm32l4_rev stm32l45_l46xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
...};
static const struct stm32l4_rev stm32l41_l42xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
...};
static const struct stm32l4_rev stm32g03_g04xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
...};
static const struct stm32l4_rev stm32g0b_g0cxx_revs[] = {
{ 0x1000, "A" },
...};
static const struct stm32l4_rev stm32g43_g44xx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
...};
static const struct stm32l4_rev stm32g47_g48xx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
...};
static const struct stm32l4_rev stm32l4r_l4sxx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
{ 0x101F, "V" },
...};
static const struct stm32l4_rev stm32l4p_l4qxx_revs[] = {
{ 0x1001, "Z" },
...};
static const struct stm32l4_rev stm32l55_l56xx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
...};
static const struct stm32l4_rev stm32g49_g4axx_revs[] = {
{ 0x1000, "A" },
...};
static const struct stm32l4_rev stm32u53_u54xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" },
...};
static const struct stm32l4_rev stm32u57_u58xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2000, "B" },
{ 0x2001, "X" }, { 0x3000, "C" }, { 0x3001, "W" },
...};
static const struct stm32l4_rev stm32u59_u5axx_revs[] = {
{ 0x3001, "X" },
...};
static const struct stm32l4_rev stm32wba5x_revs[] = {
{ 0x1000, "A" },
...};
static const struct stm32l4_rev stm32wb1xx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" },
...};
static const struct stm32l4_rev stm32wb5xx_revs[] = {
{ 0x2001, "2.1" },
...};
static const struct stm32l4_rev stm32wb3xx_revs[] = {
{ 0x1000, "A" },
...};
static const struct stm32l4_rev stm32wle_wl5xx_revs[] = {
{ 0x1000, "1.0" },
...};
static const struct stm32l4_part_info stm32l4_parts[] = {
{
.id = DEVID_STM32L47_L48XX,
.revs = stm32l47_l48xx_revs,
.num_revs = ARRAY_SIZE(stm32l47_l48xx_revs),
.device_str = "STM32L47/L48xx",
.max_flash_size_kb = 1024,
.flags = F_HAS_DUAL_BANK,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32L43_L44XX,
.revs = stm32l43_l44xx_revs,
.num_revs = ARRAY_SIZE(stm32l43_l44xx_revs),
.device_str = "STM32L43/L44xx",
.max_flash_size_kb = 256,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32C01XX,
.revs = stm32c01xx_revs,
.num_revs = ARRAY_SIZE(stm32c01xx_revs),
.device_str = "STM32C01xx",
.max_flash_size_kb = 32,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75A0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32C03XX,
.revs = stm32c03xx_revs,
.num_revs = ARRAY_SIZE(stm32c03xx_revs),
.device_str = "STM32C03xx",
.max_flash_size_kb = 32,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75A0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32U53_U54XX,
.revs = stm32u53_u54xx_revs,
.num_revs = ARRAY_SIZE(stm32u53_u54xx_revs),
.device_str = "STM32U535/U545",
.max_flash_size_kb = 512,
.flags = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x0BFA07A0,
.otp_base = 0x0BFA0000,
.otp_size = 512,
...},
{
.id = DEVID_STM32G05_G06XX,
.revs = stm32g05_g06xx_revs,
.num_revs = ARRAY_SIZE(stm32g05_g06xx_revs),
.device_str = "STM32G05/G06xx",
.max_flash_size_kb = 64,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32G07_G08XX,
.revs = stm32_g07_g08xx_revs,
.num_revs = ARRAY_SIZE(stm32_g07_g08xx_revs),
.device_str = "STM32G07/G08xx",
.max_flash_size_kb = 128,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32L49_L4AXX,
.revs = stm32l49_l4axx_revs,
.num_revs = ARRAY_SIZE(stm32l49_l4axx_revs),
.device_str = "STM32L49/L4Axx",
.max_flash_size_kb = 1024,
.flags = F_HAS_DUAL_BANK,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32L45_L46XX,
.revs = stm32l45_l46xx_revs,
.num_revs = ARRAY_SIZE(stm32l45_l46xx_revs),
.device_str = "STM32L45/L46xx",
.max_flash_size_kb = 512,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32L41_L42XX,
.revs = stm32l41_l42xx_revs,
.num_revs = ARRAY_SIZE(stm32l41_l42xx_revs),
.device_str = "STM32L41/L42xx",
.max_flash_size_kb = 128,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32G03_G04XX,
.revs = stm32g03_g04xx_revs,
.num_revs = ARRAY_SIZE(stm32g03_g04xx_revs),
.device_str = "STM32G03x/G04xx",
.max_flash_size_kb = 64,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32G0B_G0CXX,
.revs = stm32g0b_g0cxx_revs,
.num_revs = ARRAY_SIZE(stm32g0b_g0cxx_revs),
.device_str = "STM32G0B/G0Cx",
.max_flash_size_kb = 512,
.flags = F_HAS_DUAL_BANK,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32G43_G44XX,
.revs = stm32g43_g44xx_revs,
.num_revs = ARRAY_SIZE(stm32g43_g44xx_revs),
.device_str = "STM32G43/G44xx",
.max_flash_size_kb = 128,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32G47_G48XX,
.revs = stm32g47_g48xx_revs,
.num_revs = ARRAY_SIZE(stm32g47_g48xx_revs),
.device_str = "STM32G47/G48xx",
.max_flash_size_kb = 512,
.flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32L4R_L4SXX,
.revs = stm32l4r_l4sxx_revs,
.num_revs = ARRAY_SIZE(stm32l4r_l4sxx_revs),
.device_str = "STM32L4R/L4Sxx",
.max_flash_size_kb = 2048,
.flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32L4P_L4QXX,
.revs = stm32l4p_l4qxx_revs,
.num_revs = ARRAY_SIZE(stm32l4p_l4qxx_revs),
.device_str = "STM32L4P/L4Qxx",
.max_flash_size_kb = 1024,
.flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32L55_L56XX,
.revs = stm32l55_l56xx_revs,
.num_revs = ARRAY_SIZE(stm32l55_l56xx_revs),
.device_str = "STM32L55/L56xx",
.max_flash_size_kb = 512,
.flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x0BFA05E0,
.otp_base = 0x0BFA0000,
.otp_size = 512,
...},
{
.id = DEVID_STM32G49_G4AXX,
.revs = stm32g49_g4axx_revs,
.num_revs = ARRAY_SIZE(stm32g49_g4axx_revs),
.device_str = "STM32G49/G4Axx",
.max_flash_size_kb = 512,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32U59_U5AXX,
.revs = stm32u59_u5axx_revs,
.num_revs = ARRAY_SIZE(stm32u59_u5axx_revs),
.device_str = "STM32U59/U5Axx",
.max_flash_size_kb = 4096,
.flags = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x0BFA07A0,
.otp_base = 0x0BFA0000,
.otp_size = 512,
...},
{
.id = DEVID_STM32U57_U58XX,
.revs = stm32u57_u58xx_revs,
.num_revs = ARRAY_SIZE(stm32u57_u58xx_revs),
.device_str = "STM32U57/U58xx",
.max_flash_size_kb = 2048,
.flags = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x0BFA07A0,
.otp_base = 0x0BFA0000,
.otp_size = 512,
...},
{
.id = DEVID_STM32WBA5X,
.revs = stm32wba5x_revs,
.num_revs = ARRAY_SIZE(stm32wba5x_revs),
.device_str = "STM32WBA5x",
.max_flash_size_kb = 1024,
.flags = F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x0FF907A0,
.otp_base = 0x0FF90000,
.otp_size = 512,
...},
{
.id = DEVID_STM32WB1XX,
.revs = stm32wb1xx_revs,
.num_revs = ARRAY_SIZE(stm32wb1xx_revs),
.device_str = "STM32WB1x",
.max_flash_size_kb = 320,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32WB5XX,
.revs = stm32wb5xx_revs,
.num_revs = ARRAY_SIZE(stm32wb5xx_revs),
.device_str = "STM32WB5x",
.max_flash_size_kb = 1024,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32WB3XX,
.revs = stm32wb3xx_revs,
.num_revs = ARRAY_SIZE(stm32wb3xx_revs),
.device_str = "STM32WB3x",
.max_flash_size_kb = 512,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
{
.id = DEVID_STM32WLE_WL5XX,
.revs = stm32wle_wl5xx_revs,
.num_revs = ARRAY_SIZE(stm32wle_wl5xx_revs),
.device_str = "STM32WLE/WL5x",
.max_flash_size_kb = 256,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
...},
...};
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
struct stm32l4_flash_bank *stm32l4_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
if (bank->base == 0)
bank->base = STM32_FLASH_BANK_BASE;
stm32l4_info = calloc(1, sizeof(struct stm32l4_flash_bank));
if (!stm32l4_info)
return ERROR_FAIL;
bank->driver_priv = stm32l4_info;
stm32l4_info->probed = false;
stm32l4_info->otp_enabled = false;
stm32l4_info->user_bank_size = bank->size;
return ERROR_OK;
}{ ... }
struct range {
unsigned int start;
unsigned int end;
...};
static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
struct range *ranges, unsigned int *ranges_count) {
*ranges_count = 0;
bool last_bit = 0, cur_bit;
for (unsigned int i = 0; i < nbits; i++) {
cur_bit = test_bit(i, bitmap);
if (cur_bit && !last_bit) {
(*ranges_count)++;
ranges[*ranges_count - 1].start = i;
ranges[*ranges_count - 1].end = i;
}if (cur_bit && !last_bit) { ... } else if (cur_bit && last_bit) {
ranges[*ranges_count - 1].end = i;
}else if (cur_bit && last_bit) { ... }
last_bit = cur_bit;
}for (unsigned int i = 0; i < nbits; i++) { ... }
}{ ... }
static inline int range_print_one(struct range *range, char *str)
{
if (range->start == range->end)
return sprintf(str, "[%d]", range->start);
return sprintf(str, "[%d,%d]", range->start, range->end);
}{ ... }
static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
{
/* ... */
char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
char *ptr = str;
for (unsigned int i = 0; i < ranges_count; i++) {
ptr += range_print_one(&(ranges[i]), ptr);
if (i < ranges_count - 1)
*(ptr++) = ' ';
}for (unsigned int i = 0; i < ranges_count; i++) { ... }
return str;
}{ ... }
static inline bool stm32l4_is_otp(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return bank->base == stm32l4_info->part_info->otp_base;
}{ ... }
static int stm32l4_otp_enable(struct flash_bank *bank, bool enable)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (!stm32l4_is_otp(bank))
return ERROR_FAIL;
char *op_str = enable ? "enabled" : "disabled";
LOG_INFO("OTP memory (bank #%d) is %s%s for write commands",
bank->bank_number,
stm32l4_info->otp_enabled == enable ? "already " : "",
op_str);
stm32l4_info->otp_enabled = enable;
return ERROR_OK;
}{ ... }
static inline bool stm32l4_otp_is_enabled(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_info->otp_enabled;
}{ ... }
static void stm32l4_sync_rdp_tzen(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
bool tzen = false;
if (stm32l4_info->part_info->flags & F_HAS_TZ)
tzen = (stm32l4_info->optr & FLASH_TZEN) != 0;
uint32_t rdp = stm32l4_info->optr & FLASH_RDP_MASK;
/* ... */
if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) {
if (!tzen || (tzen && rdp != RDP_LEVEL_0_5))
rdp = RDP_LEVEL_1;
}if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) { ... }
stm32l4_info->tzen = tzen;
stm32l4_info->rdp = rdp;
}{ ... }
static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_info->flash_regs_base + reg_offset;
}{ ... }
static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
}{ ... }
static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}{ ... }
static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index, uint32_t *value)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
}{ ... }
static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}{ ... }
static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index, uint32_t value)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
}{ ... }
static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t status;
int retval = ERROR_OK;
for (;;) {
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & stm32l4_info->sr_bsy_mask) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}if (timeout-- <= 0) { ... }
alive_sleep(1);
}for (;;) { ... }
if (status & FLASH_WRPERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}if (status & FLASH_WRPERR) { ... }
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* ... */
stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
}if (status & FLASH_ERROR) { ... }
return retval;
}{ ... }
static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
assert(stm32l4_info->part_info->flags & F_HAS_TZ);
/* ... */
int retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("setting secure block-based areas registers (SECBBxRy) to 0x%08x", value);
const uint8_t secbb_regs[] = {
FLASH_SECBB1(1), FLASH_SECBB1(2), FLASH_SECBB1(3), FLASH_SECBB1(4),
FLASH_SECBB2(1), FLASH_SECBB2(2), FLASH_SECBB2(3), FLASH_SECBB2(4)
...};
unsigned int num_secbb_regs = ARRAY_SIZE(secbb_regs);
/* ... */
if (!stm32l4_info->dual_bank_mode)
num_secbb_regs /= 2;
for (unsigned int i = 0; i < num_secbb_regs; i++) {
retval = stm32l4_write_flash_reg(bank, secbb_regs[i], value);
if (retval != ERROR_OK)
return retval;
}for (unsigned int i = 0; i < num_secbb_regs; i++) { ... }
return ERROR_OK;
}{ ... }
static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
}{ ... }
static int stm32l4_unlock_reg(struct flash_bank *bank)
{
const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
uint32_t ctrl;
/* ... */
int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}if (ctrl & FLASH_LOCK) { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
uint32_t ctrl;
int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_OPTLOCK) == 0)
return ERROR_OK;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_OPTLOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}if (ctrl & FLASH_OPTLOCK) { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_perform_obl_launch(struct flash_bank *bank)
{
int retval, retval2;
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_unlock_option_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/* ... */
/* ... */
stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
stm32l4_info->probed = false;
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
FLASH_LOCK | FLASH_OPTLOCK);
if (retval != ERROR_OK)
return retval;
return retval2;
}{ ... }
static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
uint32_t value, uint32_t mask)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t optiondata;
int retval, retval2;
retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
if (retval != ERROR_OK)
return retval;
/* ... */
const uint32_t *saved_flash_regs = stm32l4_info->flash_regs;
if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_unlock_option_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
optiondata = (optiondata & ~mask) | (value & mask);
retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
FLASH_LOCK | FLASH_OPTLOCK);
stm32l4_info->flash_regs = saved_flash_regs;
if (retval != ERROR_OK)
return retval;
return retval2;
}{ ... }
static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
enum stm32l4_flash_reg_index reg_idx, int offset)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int ret;
wrpxy->reg_idx = reg_idx;
wrpxy->offset = offset;
ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
if (ret != ERROR_OK)
return ret;
wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
wrpxy->used = wrpxy->first <= wrpxy->last;
return ERROR_OK;
}{ ... }
static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int ret;
*n_wrp = 0;
/* ... */
int wrp2y_sectors_offset = -1;
if (dev_bank_id != STM32_BANK2) {
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
if (ret != ERROR_OK)
return ret;
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
if (ret != ERROR_OK)
return ret;
if ((stm32l4_info->part_info->flags & F_USE_ALL_WRPXX) && !stm32l4_info->dual_bank_mode)
wrp2y_sectors_offset = 0;
}if (dev_bank_id != STM32_BANK2) { ... }
if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
wrp2y_sectors_offset = stm32l4_info->bank1_sectors;
if (wrp2y_sectors_offset >= 0) {
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
if (ret != ERROR_OK)
return ret;
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
if (ret != ERROR_OK)
return ret;
}if (wrp2y_sectors_offset >= 0) { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int wrp_start = wrpxy->first - wrpxy->offset;
int wrp_end = wrpxy->last - wrpxy->offset;
uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);
return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
}{ ... }
static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
{
int ret;
for (unsigned int i = 0; i < n_wrp; i++) {
ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
if (ret != ERROR_OK)
return ret;
}for (unsigned int i = 0; i < n_wrp; i++) { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_protect_check(struct flash_bank *bank)
{
unsigned int n_wrp;
struct stm32l4_wrp wrpxy[4];
int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = 0;
for (unsigned int i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
bank->sectors[s].is_protected = 1;
}if (wrpxy[i].used) { ... }
}for (unsigned int i = 0; i < n_wrp; i++) { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int retval, retval2;
assert((first <= last) && (last < bank->num_sectors));
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot erase OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}if (stm32l4_is_otp(bank)) { ... }
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
if (retval != ERROR_OK) {
stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
return retval;
}if (retval != ERROR_OK) { ... }
}if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) { ... }
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/* ... */
for (unsigned int i = first; i <= last; i++) {
uint32_t erase_flags;
erase_flags = FLASH_PER | FLASH_STRT;
if (i >= stm32l4_info->bank1_sectors) {
uint8_t snb;
snb = i - stm32l4_info->bank1_sectors;
erase_flags |= snb << FLASH_PAGE_SHIFT | stm32l4_info->cr_bker_mask;
}if (i >= stm32l4_info->bank1_sectors) { ... } else
erase_flags |= i << FLASH_PAGE_SHIFT;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
if (retval != ERROR_OK)
break;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
break;
}for (unsigned int i = first; i <= last; i++) { ... }
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
if (retval3 != ERROR_OK)
return retval3;
}if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) { ... }
if (retval != ERROR_OK)
return retval;
return retval2;
}{ ... }
static int stm32l4_protect_same_bank(struct flash_bank *bank, enum stm32_bank_id bank_id, int set,
unsigned int first, unsigned int last)
{
unsigned int i;
for (i = first; i <= last; i++) {
if (bank->sectors[i].is_protected != set)
break;
else if (i == last) {
LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
return ERROR_OK;
}else if (i == last) { ... }
}for (i = first; i <= last; i++) { ... }
/* ... */
unsigned int n_wrp;
struct stm32l4_wrp wrpxy[4];
int ret = stm32l4_get_all_wrpxy(bank, bank_id, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
DECLARE_BITMAP(pages, bank->num_sectors);
bitmap_zero(pages, bank->num_sectors);
for (i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
set_bit(p, pages);
}if (wrpxy[i].used) { ... }
}for (i = 0; i < n_wrp; i++) { ... }
/* ... */
struct range ranges[n_wrp + 1];
unsigned int ranges_count = 0;
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
if (ranges_count > 0) {
char *ranges_str = range_print_alloc(ranges, ranges_count);
LOG_DEBUG("current protected areas: %s", ranges_str);
free(ranges_str);
}if (ranges_count > 0) { ... } else
LOG_DEBUG("current protected areas: none");
if (set) {
for (i = first; i <= last; i++)
set_bit(i, pages);
}if (set) { ... } else {
for (i = first; i <= last; i++)
clear_bit(i, pages);
}else { ... }
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
if (ranges_count > 0) {
char *ranges_str = range_print_alloc(ranges, ranges_count);
LOG_DEBUG("requested areas for protection: %s", ranges_str);
free(ranges_str);
}if (ranges_count > 0) { ... } else
LOG_DEBUG("requested areas for protection: none");
if (ranges_count > n_wrp) {
LOG_ERROR("cannot set the requested protection "
"(only %u write protection areas are available)" , n_wrp);
return ERROR_FAIL;
}if (ranges_count > n_wrp) { ... }
for (i = 0; i < n_wrp; i++) {
wrpxy[i].first = wrpxy[i].offset + 1;
wrpxy[i].last = wrpxy[i].offset;
}for (i = 0; i < n_wrp; i++) { ... }
for (i = 0; i < ranges_count; i++) {
wrpxy[i].first = ranges[i].start;
wrpxy[i].last = ranges[i].end;
}for (i = 0; i < ranges_count; i++) { ... }
return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
}{ ... }
static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot protect/unprotect OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}if (stm32l4_is_otp(bank)) { ... }
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
int ret = stm32l4_protect_check(bank);
if (ret != ERROR_OK)
return ret;
if (last < stm32l4_info->bank1_sectors) {
return stm32l4_protect_same_bank(bank, STM32_BANK1, set, first, last);
}if (last < stm32l4_info->bank1_sectors) { ... } else if (first >= stm32l4_info->bank1_sectors) {
return stm32l4_protect_same_bank(bank, STM32_BANK2, set, first, last);
}else if (first >= stm32l4_info->bank1_sectors) { ... } else {
ret = stm32l4_protect_same_bank(bank, STM32_BANK1, set, first, stm32l4_info->bank1_sectors - 1);
if (ret != ERROR_OK)
return ret;
return stm32l4_protect_same_bank(bank, STM32_BANK2, set, stm32l4_info->bank1_sectors, last);
}else { ... }
}{ ... }
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32l4_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
...};
if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code), &write_algorithm) != ERROR_OK) { ... }
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32l4_flash_write_code),
stm32l4_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}if (retval != ERROR_OK) { ... }
assert(stm32l4_info->data_width % 8 == 0);
const size_t extra_size = sizeof(struct stm32l4_work_area);
uint32_t buffer_size = target_get_working_area_avail(target) - extra_size;
buffer_size &= ~(stm32l4_info->data_width - 1);
if (buffer_size < 256) {
LOG_WARNING("large enough working area not available, can't do block memory writes");
target_free_working_area(target, write_algorithm);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (buffer_size < 256) { ... } else if (buffer_size > 16384) {
buffer_size = 16384;
}else if (buffer_size > 16384) { ... }
if (target_alloc_working_area_try(target, buffer_size + extra_size, &source) != ERROR_OK) {
LOG_ERROR("allocating working area failed");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (target_alloc_working_area_try(target, buffer_size + extra_size, &source) != ERROR_OK) { ... }
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
init_reg_param(®_params[4], "sp", 32, PARAM_OUT);
buf_set_u32(reg_params[4].value, 0, 32, source->address +
offsetof(struct stm32l4_work_area, stack) + LDR_STACK_SIZE);
struct stm32l4_loader_params loader_extra_params;
target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_addr,
stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_cr_addr,
stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_word_size,
stm32l4_info->data_width);
target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_bsy_mask,
stm32l4_info->sr_bsy_mask);
retval = target_write_buffer(target, source->address, sizeof(loader_extra_params),
(uint8_t *) &loader_extra_params);
if (retval != ERROR_OK)
return retval;
retval = target_run_flash_async_algorithm(target, buffer, count, stm32l4_info->data_width,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address + offsetof(struct stm32l4_work_area, fifo),
source->size - offsetof(struct stm32l4_work_area, fifo),
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32l4 flash write algorithm");
uint32_t error;
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &error);
error &= FLASH_ERROR;
if (error & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if (error != 0) {
LOG_ERROR("flash write failed = %08" PRIx32, error);
stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
retval = ERROR_FAIL;
}if (error != 0) { ... }
}if (retval == ERROR_FLASH_OPERATION_FAILED) { ... }
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
return retval;
}{ ... }
static int stm32l4_write_block_without_loader(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t address = bank->base + offset;
int retval = ERROR_OK;
retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_PG);
if (retval != ERROR_OK)
return retval;
const uint8_t *src = buffer;
const uint32_t data_width_in_words = stm32l4_info->data_width / 4;
while (count--) {
retval = target_write_memory(target, address, 4, data_width_in_words, src);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
src += stm32l4_info->data_width;
address += stm32l4_info->data_width;
}while (count--) { ... }
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, 0);
if (retval != ERROR_OK)
return retval;
return retval;
}{ ... }
static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int retval = ERROR_OK, retval2;
if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) {
LOG_ERROR("OTP memory is disabled for write commands");
return ERROR_FAIL;
}if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) { ... }
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
assert(stm32l4_info->data_width % 8 == 0);
/* ... */
assert(offset % stm32l4_info->data_width == 0);
assert(count % stm32l4_info->data_width == 0);
/* ... */
struct flash_sector *head = &bank->sectors[0];
struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
while ((head < tail) && (offset >= (head + 1)->offset)) {
head++;
}while ((head < tail) && (offset >= (head + 1)->offset)) { ... }
while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
--tail;
}while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) { ... }
LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
/* ... */
while (head < tail) {
if (head->offset + head->size != (head + 1)->offset) {
LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
bank->base + head->offset + head->size,
bank->base + (head + 1)->offset - 1);
retval = ERROR_FLASH_DST_OUT_OF_BANK;
}if (head->offset + head->size != (head + 1)->offset) { ... }
head++;
}while (head < tail) { ... }
if (retval != ERROR_OK)
return retval;
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
if (retval != ERROR_OK) {
stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
return retval;
}if (retval != ERROR_OK) { ... }
}if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) { ... }
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/* ... */
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0_5))
LOG_WARNING("RDP = 0x55, the work-area should be in non-secure RAM (check SAU partitioning)");
retval = stm32l4_write_block(bank, buffer, offset,
count / stm32l4_info->data_width);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
LOG_WARNING("falling back to programming without a flash loader (slower)");
retval = stm32l4_write_block_without_loader(bank, buffer, offset,
count / stm32l4_info->data_width);
}if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { ... }
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
if (retval3 != ERROR_OK)
return retval3;
}if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) { ... }
if (retval != ERROR_OK) {
LOG_ERROR("block write failed");
return retval;
}if (retval != ERROR_OK) { ... }
return retval2;
}{ ... }
static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
{
int retval = ERROR_OK;
struct target *target = bank->target;
uint32_t dbgmcu_idcode[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};
for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) {
retval = target_read_u32(target, dbgmcu_idcode[i], id);
if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
return ERROR_OK;
}for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) { ... }
/* ... */
struct armv7m_common *armv7m = target_to_armv7m_safe(target);
if (!armv7m) {
LOG_ERROR("Flash requires Cortex-M target");
return ERROR_TARGET_INVALID;
}if (!armv7m) { ... }
/* ... */
if (cortex_m_get_impl_part(target) == CORTEX_M0P_PARTNO &&
armv7m->debug_ap && armv7m->debug_ap->ap_num == 1) {
uint32_t uid64_ids;
/* ... */
retval = target_read_u32(target, UID64_IDS, &uid64_ids);
if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
*id = DEVID_STM32WLE_WL5XX;
return ERROR_OK;
}if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) { ... }
}if (cortex_m_get_impl_part(target) == CORTEX_M0P_PARTNO && armv7m->debug_ap && armv7m->debug_ap->ap_num == 1) { ... }
LOG_ERROR("can't get the device id");
return (retval == ERROR_OK) ? ERROR_FAIL : retval;
}{ ... }
static const char *get_stm32l4_rev_str(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
assert(part_info);
const uint16_t rev_id = stm32l4_info->idcode >> 16;
for (unsigned int i = 0; i < part_info->num_revs; i++) {
if (rev_id == part_info->revs[i].rev)
return part_info->revs[i].str;
}for (unsigned int i = 0; i < part_info->num_revs; i++) { ... }
return "'unknown'";
}{ ... }
static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
assert(stm32l4_info->part_info);
return stm32l4_is_otp(bank) ? "OTP" :
stm32l4_info->dual_bank_mode ? "Flash dual" :
"Flash single";
}{ ... }
static int stm32l4_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info;
uint16_t flash_size_kb = 0xffff;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_TARGET_NOT_EXAMINED;
}if (!target_was_examined(target)) { ... }
struct armv7m_common *armv7m = target_to_armv7m_safe(target);
if (!armv7m) {
LOG_ERROR("Flash requires Cortex-M target");
return ERROR_TARGET_INVALID;
}if (!armv7m) { ... }
stm32l4_info->probed = false;
int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
if (retval != ERROR_OK)
return retval;
const uint32_t device_id = stm32l4_info->idcode & 0xFFF;
for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
if (device_id == stm32l4_parts[n].id) {
stm32l4_info->part_info = &stm32l4_parts[n];
break;
}if (device_id == stm32l4_parts[n].id) { ... }
}for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) { ... }
if (!stm32l4_info->part_info) {
LOG_WARNING("Cannot identify target as an %s family device.", device_families);
return ERROR_FAIL;
}if (!stm32l4_info->part_info) { ... }
part_info = stm32l4_info->part_info;
const char *rev_str = get_stm32l4_rev_str(bank);
const uint16_t rev_id = stm32l4_info->idcode >> 16;
LOG_INFO("device idcode = 0x%08" PRIx32 " (%s - Rev %s : 0x%04x)",
stm32l4_info->idcode, part_info->device_str, rev_str, rev_id);
stm32l4_info->flash_regs_base = stm32l4_info->part_info->flash_regs_base;
stm32l4_info->data_width = (part_info->flags & F_QUAD_WORD_PROG) ? 16 : 8;
stm32l4_info->cr_bker_mask = FLASH_BKER;
stm32l4_info->sr_bsy_mask = FLASH_BSY;
/* ... */
bank->write_start_alignment = stm32l4_info->data_width;
bank->write_end_alignment = stm32l4_info->data_width;
if (part_info->flags & F_HAS_L5_FLASH_REGS)
stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
else
stm32l4_info->flash_regs = stm32l4_flash_regs;
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
if (retval != ERROR_OK)
return retval;
stm32l4_sync_rdp_tzen(bank);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
if (part_info->flags & F_HAS_L5_FLASH_REGS) {
stm32l4_info->flash_regs_base |= STM32L5_REGS_SEC_OFFSET;
stm32l4_info->flash_regs = stm32l5_s_flash_regs;
}if (part_info->flags & F_HAS_L5_FLASH_REGS) { ... } else {
LOG_ERROR("BUG: device supported incomplete");
return ERROR_NOT_IMPLEMENTED;
}else { ... }
}if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) { ... }
if (part_info->flags & F_HAS_TZ)
LOG_INFO("TZEN = %d : TrustZone %s by option bytes",
stm32l4_info->tzen,
stm32l4_info->tzen ? "enabled" : "disabled");
LOG_INFO("RDP level %s (0x%02X)",
stm32l4_info->rdp == RDP_LEVEL_0 ? "0" : stm32l4_info->rdp == RDP_LEVEL_0_5 ? "0.5" : "1",
stm32l4_info->rdp);
if (stm32l4_is_otp(bank)) {
bank->size = part_info->otp_size;
LOG_INFO("OTP size is %d bytes, base address is " TARGET_ADDR_FMT, bank->size, bank->base);
free(bank->sectors);
bank->num_sectors = 1;
bank->sectors = alloc_block_array(0, part_info->otp_size, 1);
if (!bank->sectors) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}if (!bank->sectors) { ... }
stm32l4_info->probed = true;
return ERROR_OK;
}if (stm32l4_is_otp(bank)) { ... } else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) {
LOG_ERROR("invalid bank base address");
return ERROR_FAIL;
}else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) { ... }
retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
/* ... */
if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
|| flash_size_kb > part_info->max_flash_size_kb) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
part_info->max_flash_size_kb);
flash_size_kb = part_info->max_flash_size_kb;
}if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0 || flash_size_kb > part_info->max_flash_size_kb) { ... }
/* ... */
if (stm32l4_info->user_bank_size) {
LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
flash_size_kb = stm32l4_info->user_bank_size / 1024;
}if (stm32l4_info->user_bank_size) { ... }
LOG_INFO("flash size = %d KiB", flash_size_kb);
assert((flash_size_kb != 0xffff) && flash_size_kb);
const bool is_max_flash_size = flash_size_kb == stm32l4_info->part_info->max_flash_size_kb;
stm32l4_info->bank1_sectors = 0;
stm32l4_info->hole_sectors = 0;
int num_pages = 0;
int page_size_kb = 0;
stm32l4_info->dual_bank_mode = false;
switch (device_id) {
case DEVID_STM32L47_L48XX:
case DEVID_STM32L49_L4AXX:
/* ... */
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if (is_max_flash_size || (stm32l4_info->optr & FLASH_L4_DUAL_BANK)) {
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}if (is_max_flash_size || (stm32l4_info->optr & FLASH_L4_DUAL_BANK)) { ... }
break;case DEVID_STM32L49_L4AXX:
case DEVID_STM32L43_L44XX:
case DEVID_STM32C01XX:
case DEVID_STM32C03XX:
case DEVID_STM32G05_G06XX:
case DEVID_STM32G07_G08XX:
case DEVID_STM32L45_L46XX:
case DEVID_STM32L41_L42XX:
case DEVID_STM32G03_G04XX:
case DEVID_STM32G43_G44XX:
case DEVID_STM32G49_G4AXX:
case DEVID_STM32WB1XX:
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
break;case DEVID_STM32WB1XX:
case DEVID_STM32G0B_G0CXX:
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
stm32l4_info->cr_bker_mask = FLASH_BKER_G0;
if (stm32l4_info->optr & FLASH_G0_DUAL_BANK) {
stm32l4_info->sr_bsy_mask = FLASH_BSY | FLASH_BSY2;
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}if (stm32l4_info->optr & FLASH_G0_DUAL_BANK) { ... }
break;case DEVID_STM32G0B_G0CXX:
case DEVID_STM32G47_G48XX:
/* ... */
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if (stm32l4_info->optr & FLASH_G4_DUAL_BANK) {
stm32l4_info->dual_bank_mode = true;
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages / 2;
stm32l4_info->hole_sectors =
(part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
}if (stm32l4_info->optr & FLASH_G4_DUAL_BANK) { ... }
break;case DEVID_STM32G47_G48XX:
case DEVID_STM32L4R_L4SXX:
case DEVID_STM32L4P_L4QXX:
/* ... */
page_size_kb = 8;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L4R_DBANK)) ||
(!is_max_flash_size && (stm32l4_info->optr & FLASH_LRR_DB1M))) {
stm32l4_info->dual_bank_mode = true;
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages / 2;
}if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L4R_DBANK)) || (!is_max_flash_size && (stm32l4_info->optr & FLASH_LRR_DB1M))) { ... }
break;case DEVID_STM32L4P_L4QXX:
case DEVID_STM32L55_L56XX:
/* ... */
page_size_kb = (stm32l4_info->optr & FLASH_L5_DBANK) ? 2 : 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DBANK)) ||
(!is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DB256))) {
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DBANK)) || (!is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DB256))) { ... }
break;case DEVID_STM32L55_L56XX:
case DEVID_STM32U53_U54XX:
case DEVID_STM32U57_U58XX:
case DEVID_STM32U59_U5AXX:
/* ... */
page_size_kb = 8;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if (is_max_flash_size || (stm32l4_info->optr & FLASH_U5_DUALBANK)) {
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}if (is_max_flash_size || (stm32l4_info->optr & FLASH_U5_DUALBANK)) { ... }
break;case DEVID_STM32U59_U5AXX:
case DEVID_STM32WBA5X:
page_size_kb = 8;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
break;case DEVID_STM32WBA5X:
case DEVID_STM32WB5XX:
case DEVID_STM32WB3XX:
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
break;case DEVID_STM32WB3XX:
case DEVID_STM32WLE_WL5XX:
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
/* ... */
if (armv7m->debug_ap && armv7m->debug_ap->ap_num == 1)
stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
break;case DEVID_STM32WLE_WL5XX:
default:
LOG_ERROR("unsupported device");
return ERROR_FAIL;default
}switch (device_id) { ... }
if (num_pages == 0) {
if (stm32l4_info->user_bank_size)
LOG_ERROR("The specified flash size is less than page size");
LOG_ERROR("Flash pages count cannot be zero");
return ERROR_FAIL;
}if (num_pages == 0) { ... }
LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
if (gap_size_kb != 0) {
LOG_INFO("gap detected from 0x%08x to 0x%08x",
STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
* page_size_kb * 1024,
STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
* page_size_kb + gap_size_kb) * 1024 - 1);
}if (gap_size_kb != 0) { ... }
/* ... */
/* ... */
uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
free(bank->sectors);
bank->size = (flash_size_kb + gap_size_kb) * 1024;
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
if (!bank->sectors) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}if (!bank->sectors) { ... }
for (unsigned int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = i * page_size_kb * 1024;
/* ... */
if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
bank->sectors[i].offset += gap_size_kb * 1024;
bank->sectors[i].size = page_size_kb * 1024;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}for (unsigned int i = 0; i < bank->num_sectors; i++) { ... }
stm32l4_info->probed = true;
return ERROR_OK;
}{ ... }
static int stm32l4_auto_probe(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_info->probed) {
uint32_t optr_cur;
uint32_t saved_flash_regs_base = stm32l4_info->flash_regs_base;
if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
stm32l4_info->flash_regs_base &= ~STM32L5_REGS_SEC_OFFSET;
int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &optr_cur);
stm32l4_info->flash_regs_base = saved_flash_regs_base;
if (retval != ERROR_OK)
return retval;
if (stm32l4_info->optr == optr_cur)
return ERROR_OK;
}if (stm32l4_info->probed) { ... }
return stm32l4_probe(bank);
}{ ... }
static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
if (part_info) {
const uint16_t rev_id = stm32l4_info->idcode >> 16;
command_print_sameline(cmd, "%s - Rev %s : 0x%04x", part_info->device_str,
get_stm32l4_rev_str(bank), rev_id);
if (stm32l4_info->probed)
command_print_sameline(cmd, " - %s-bank", get_stm32l4_bank_type_str(bank));
}if (part_info) { ... } else {
command_print_sameline(cmd, "Cannot identify target as an %s device", device_families);
}else { ... }
return ERROR_OK;
}{ ... }
static int stm32l4_mass_erase(struct flash_bank *bank)
{
int retval, retval2;
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot erase OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}if (stm32l4_is_otp(bank)) { ... }
uint32_t action = FLASH_MER1;
if (stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)
action |= FLASH_MER2;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
if (retval != ERROR_OK) {
stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
return retval;
}if (retval != ERROR_OK) { ... }
}if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) { ... }
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
if (retval3 != ERROR_OK)
return retval3;
}if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) { ... }
if (retval != ERROR_OK)
return retval;
return retval2;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_mass_erase(bank);
if (retval == ERROR_OK)
command_print(CMD, "stm32l4x mass erase complete");
else
command_print(CMD, "stm32l4x mass erase failed");
return retval;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_option_read_command)
{
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
uint32_t reg_offset, reg_addr;
uint32_t value = 0;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
if (retval != ERROR_OK)
return retval;
command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
return retval;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_option_write_command)
{
if (CMD_ARGC != 3 && CMD_ARGC != 4)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
uint32_t reg_offset;
uint32_t value = 0;
uint32_t mask = 0xFFFFFFFF;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
if (CMD_ARGC > 3)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
command_print(CMD, "%s Option written.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
retval = stm32l4_write_option(bank, reg_offset, value, mask);
return retval;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_trustzone_command)
{
if (CMD_ARGC < 1 || CMD_ARGC > 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) {
LOG_ERROR("This device does not have a TrustZone");
return ERROR_FAIL;
}if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) { ... }
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
if (retval != ERROR_OK)
return retval;
stm32l4_sync_rdp_tzen(bank);
if (CMD_ARGC == 1) {
LOG_INFO("Global TrustZone Security is %s", stm32l4_info->tzen ? "enabled" : "disabled");
return ERROR_OK;
}if (CMD_ARGC == 1) { ... }
bool new_tzen;
COMMAND_PARSE_ENABLE(CMD_ARGV[1], new_tzen);
if (new_tzen == stm32l4_info->tzen) {
LOG_INFO("The requested TZEN is already programmed");
return ERROR_OK;
}if (new_tzen == stm32l4_info->tzen) { ... }
if (new_tzen) {
if (stm32l4_info->rdp != RDP_LEVEL_0) {
LOG_ERROR("TZEN can be set only when RDP level is 0");
return ERROR_FAIL;
}if (stm32l4_info->rdp != RDP_LEVEL_0) { ... }
retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
FLASH_TZEN, FLASH_TZEN);
}if (new_tzen) { ... } else {
/* ... */
if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) {
LOG_ERROR("Deactivation of TZEN is only possible when the RDP is changing to level 0");
return ERROR_FAIL;
}if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) { ... }
retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
RDP_LEVEL_0, FLASH_RDP_MASK | FLASH_TZEN);
}else { ... }
if (retval != ERROR_OK)
return retval;
return stm32l4_perform_obl_launch(bank);
}{ ... }
COMMAND_HANDLER(stm32l4_handle_option_load_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_perform_obl_launch(bank);
if (retval != ERROR_OK) {
command_print(CMD, "stm32l4x option load failed");
return retval;
}if (retval != ERROR_OK) { ... }
command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_lock_command)
{
struct target *target = NULL;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot lock/unlock OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}if (stm32l4_is_otp(bank)) { ... }
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) {
command_print(CMD, "%s failed to lock device", bank->driver->name);
return ERROR_OK;
}if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX], RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) { ... }
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot lock/unlock OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}if (stm32l4_is_otp(bank)) { ... }
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) {
command_print(CMD, "%s failed to unlock device", bank->driver->name);
return ERROR_OK;
}if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX], RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) { ... }
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
{
if (CMD_ARGC < 1 || CMD_ARGC > 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("OTP memory does not have write protection areas");
return ERROR_FLASH_OPER_UNSUPPORTED;
}if (stm32l4_is_otp(bank)) { ... }
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
if (CMD_ARGC == 2) {
if (strcmp(CMD_ARGV[1], "bank1") == 0)
dev_bank_id = STM32_BANK1;
else if (strcmp(CMD_ARGV[1], "bank2") == 0)
dev_bank_id = STM32_BANK2;
else
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (CMD_ARGC == 2) { ... }
if (dev_bank_id == STM32_BANK2) {
if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) {
LOG_ERROR("this device has no second bank");
return ERROR_FAIL;
}if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) { ... } else if (!stm32l4_info->dual_bank_mode) {
LOG_ERROR("this device is configured in single bank mode");
return ERROR_FAIL;
}else if (!stm32l4_info->dual_bank_mode) { ... }
}if (dev_bank_id == STM32_BANK2) { ... }
int ret;
unsigned int n_wrp, i;
struct stm32l4_wrp wrpxy[4];
ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
DECLARE_BITMAP(pages, bank->num_sectors);
bitmap_zero(pages, bank->num_sectors);
for (i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
set_bit(p, pages);
}if (wrpxy[i].used) { ... }
}for (i = 0; i < n_wrp; i++) { ... }
struct range ranges[n_wrp];
unsigned int ranges_count = 0;
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
if (ranges_count > 0) {
char *ranges_str = range_print_alloc(ranges, ranges_count);
command_print(CMD, "protected areas: %s", ranges_str);
free(ranges_str);
}if (ranges_count > 0) { ... } else
command_print(CMD, "no protected areas");
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32l4_handle_otp_command)
{
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (!stm32l4_is_otp(bank)) {
command_print(CMD, "the specified bank is not an OTP memory");
return ERROR_FAIL;
}if (!stm32l4_is_otp(bank)) { ... }
if (strcmp(CMD_ARGV[1], "enable") == 0)
stm32l4_otp_enable(bank, true);
else if (strcmp(CMD_ARGV[1], "disable") == 0)
stm32l4_otp_enable(bank, false);
else if (strcmp(CMD_ARGV[1], "show") == 0)
command_print(CMD, "OTP memory bank #%d is %s for write commands.",
bank->bank_number, stm32l4_otp_is_enabled(bank) ? "enabled" : "disabled");
else
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}{ ... }
static const struct command_registration stm32l4_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32l4_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
...},
{
.name = "unlock",
.handler = stm32l4_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
...},
{
.name = "mass_erase",
.handler = stm32l4_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
...},
{
.name = "option_read",
.handler = stm32l4_handle_option_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset",
.help = "Read & Display device option bytes.",
...},
{
.name = "option_write",
.handler = stm32l4_handle_option_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset value [mask]",
.help = "Write device option bit fields with provided value.",
...},
{
.name = "trustzone",
.handler = stm32l4_handle_trustzone_command,
.mode = COMMAND_EXEC,
.usage = "<bank_id> [enable|disable]",
.help = "Configure TrustZone security",
...},
{
.name = "wrp_info",
.handler = stm32l4_handle_wrp_info_command,
.mode = COMMAND_EXEC,
.usage = "bank_id [bank1|bank2]",
.help = "list the protected areas using WRP",
...},
{
.name = "option_load",
.handler = stm32l4_handle_option_load_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Force re-load of device options (will cause device reset).",
...},
{
.name = "otp",
.handler = stm32l4_handle_otp_command,
.mode = COMMAND_EXEC,
.usage = "<bank_id> <enable|disable|show>",
.help = "OTP (One Time Programmable) memory write enable/disable",
...},
COMMAND_REGISTRATION_DONE
...};
static const struct command_registration stm32l4_command_handlers[] = {
{
.name = "stm32l4x",
.mode = COMMAND_ANY,
.help = "stm32l4x flash command group",
.usage = "",
.chain = stm32l4_exec_command_handlers,
...},
COMMAND_REGISTRATION_DONE
...};
const struct flash_driver stm32l4x_flash = {
.name = "stm32l4x",
.commands = stm32l4_command_handlers,
.flash_bank_command = stm32l4_flash_bank_command,
.erase = stm32l4_erase,
.protect = stm32l4_protect,
.write = stm32l4_write,
.read = default_flash_read,
.probe = stm32l4_probe,
.auto_probe = stm32l4_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32l4_protect_check,
.info = get_stm32l4_info,
.free_driver_priv = default_flash_free_driver_priv,
...};