1
2
3
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
187
188
189
190
191
192
193
194
195
196
197
198
199
200
205
206
210
211
217
218
219
220
221
222
223
224
225
226
227
228
242
243
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
266
267
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
291
292
293
294
295
299
300
301
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
395
396
397
398
399
400
405
406
407
408
409
410
411
412
419
420
421
422
423
424
425
426
427
431
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
464
465
478
479
480
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
576
577
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
602
603
604
605
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
664
665
673
674
675
676
680
681
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
710
711
715
716
721
722
723
724
725
729
730
731
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
813
814
818
819
820
821
822
823
824
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
937
938
939
940
941
942
958
959
960
961
965
966
967
968
969
970
971
972
973
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1016
1017
1018
1019
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1065
1066
1071
1075
1076
1077
1078
1082
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1120
1121
1122
1123
1124
1125
1127
1132
1133
1135
1139
1140
1141
1142
1143
1144
1145
1146
1161
1162
1163
1179
1180
1181
1182
1183
1184
1185
1186
1187
1191
1192
1193
1194
1195
1196
1197
1198
1204
1205
1206
1207
1208
1209
1210
1211
1212
1219
1220
1221
1222
1223
1224
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1270
1274
1278
1282
1286
1290
1294
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1310
1314
1318
1322
1325
1326
1327
1328
1338
1339
1340
1341
1342
1364
1378
1391
1401
1411
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1444
1445
1449
1450
1451
1452
1453
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1483
1484
1488
1489
1491
1492
1495
1496
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1601
1605
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1643
1644
1645
1646
1647
1651
1652
1653
1654
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
/* ... */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/cortex_m.h>
/* ... */
/* ... */
#define FLASH_ERASE_TIMEOUT 10000
#define FLASH_WRITE_TIMEOUT 5
#define FLASH_MASS_ERASE_TIMEOUT 33000
#define FLASH_BANK_BASE 0x80000000
#define STM32F2_OTP_SIZE 512
#define STM32F2_OTP_SECTOR_SIZE 32
#define STM32F2_OTP_BANK_BASE 0x1fff7800
#define STM32F2_OTP_LOCK_BASE ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
#define STM32F7_OTP_SECTOR_SIZE 64
#define STM32F7_OTP_SIZE 1024
#define STM32F7_OTP_BANK_BASE 0x1ff0f000
#define STM32F7_OTP_LOCK_BASE ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
#define STM32_FLASH_BASE 0x40023c00
#define STM32_FLASH_ACR 0x40023c00
#define STM32_FLASH_KEYR 0x40023c04
#define STM32_FLASH_OPTKEYR 0x40023c08
#define STM32_FLASH_SR 0x40023c0C
#define STM32_FLASH_CR 0x40023c10
#define STM32_FLASH_OPTCR 0x40023c14
#define STM32_FLASH_OPTCR1 0x40023c18
#define STM32_FLASH_OPTCR2 0x40023c1c
#define FLASH_PG (1 << 0)
#define FLASH_SER (1 << 1)
#define FLASH_MER (1 << 2)
#define FLASH_MER1 (1 << 15)
#define FLASH_STRT (1 << 16)
#define FLASH_PSIZE_8 (0 << 8)
#define FLASH_PSIZE_16 (1 << 8)
#define FLASH_PSIZE_32 (2 << 8)
#define FLASH_PSIZE_64 (3 << 8)
#define FLASH_SNB(a) ((a) << 3)
#define FLASH_LOCK (1 << 31)
#define FLASH_BSY (1 << 16)
#define FLASH_PGSERR (1 << 7)
#define FLASH_PGPERR (1 << 6)
#define FLASH_PGAERR (1 << 5)
#define FLASH_WRPERR (1 << 4)
#define FLASH_OPERR (1 << 1)
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
#define OPTCR_LOCK (1 << 0)
#define OPTCR_START (1 << 1)
#define OPTCR_NDBANK (1 << 29)
#define OPTCR_DB1M (1 << 30)
#define OPTCR_SPRMOD (1 << 31)
#define OPTCR2_PCROP_RDP (1 << 31)
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
49 defines
struct stm32x_options {
uint8_t RDP;
uint16_t user_options;
uint32_t protection;
uint32_t boot_addr;
uint32_t optcr2_pcrop;
...};
struct stm32x_flash_bank {
struct stm32x_options option_bytes;
bool probed;
bool otp_unlocked;
bool has_large_mem;
bool has_extra_options;
bool has_boot_addr;
bool has_optcr2_pcrop;
unsigned int protection_bits;
uint32_t user_bank_size;
...};
static bool stm32x_is_otp(struct flash_bank *bank)
{
return bank->base == STM32F2_OTP_BANK_BASE ||
bank->base == STM32F7_OTP_BANK_BASE;
}{ ... }
static bool stm32x_otp_is_f7(struct flash_bank *bank)
{
return bank->base == STM32F7_OTP_BANK_BASE;
}{ ... }
static int stm32x_is_otp_unlocked(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
return stm32x_info->otp_unlocked;
}{ ... }
static int stm32x_otp_disable(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
LOG_INFO("OTP memory bank #%u is disabled for write commands.",
bank->bank_number);
stm32x_info->otp_unlocked = false;
return ERROR_OK;
}{ ... }
static int stm32x_otp_enable(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (!stm32x_info->otp_unlocked) {
LOG_INFO("OTP memory bank #%u is enabled for write commands.",
bank->bank_number);
stm32x_info->otp_unlocked = true;
}if (!stm32x_info->otp_unlocked) { ... } else {
LOG_WARNING("OTP memory bank #%u is already enabled for write commands.",
bank->bank_number);
}else { ... }
return ERROR_OK;
}{ ... }
/* ... */
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = false;
stm32x_info->otp_unlocked = false;
stm32x_info->user_bank_size = bank->size;
return ERROR_OK;
}{ ... }
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
return reg;
}{ ... }
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
}{ ... }
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32, status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}if (timeout-- <= 0) { ... }
alive_sleep(1);
}for (;;) { ... }
if (status & FLASH_WRPERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}if (status & FLASH_WRPERR) { ... }
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* ... */
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
status & FLASH_ERROR);
}if (status & FLASH_ERROR) { ... }
return retval;
}{ ... }
static int stm32x_unlock_reg(struct target *target)
{
uint32_t ctrl;
/* ... */
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CR: 0x%" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}if (ctrl & FLASH_LOCK) { ... }
return ERROR_OK;
}{ ... }
static int stm32x_unlock_option_reg(struct target *target)
{
uint32_t ctrl;
int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & OPTCR_LOCK) == 0)
return ERROR_OK;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & OPTCR_LOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}if (ctrl & OPTCR_LOCK) { ... }
return ERROR_OK;
}{ ... }
static int stm32x_read_options(struct flash_bank *bank)
{
uint32_t optiondata;
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
if (retval != ERROR_OK)
return retval;
/* ... */
stm32x_info->option_bytes.user_options = optiondata & 0xfc;
stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
stm32x_info->option_bytes.protection =
(optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
if (stm32x_info->has_extra_options) {
stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
}if (stm32x_info->has_extra_options) { ... }
if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
if (retval != ERROR_OK)
return retval;
if (stm32x_info->has_boot_addr) {
stm32x_info->option_bytes.boot_addr = optiondata;
}if (stm32x_info->has_boot_addr) { ... } else {
stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
}else { ... }
}if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) { ... }
if (stm32x_info->has_optcr2_pcrop) {
retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.optcr2_pcrop = optiondata;
if (stm32x_info->has_optcr2_pcrop &&
(stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
LOG_INFO("PCROP Engaged");
}if (stm32x_info->has_optcr2_pcrop && (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) { ... }
}if (stm32x_info->has_optcr2_pcrop) { ... } else {
stm32x_info->option_bytes.optcr2_pcrop = 0x0;
}else { ... }
if (stm32x_info->option_bytes.RDP != 0xAA)
LOG_INFO("Device Security Bit Set");
return ERROR_OK;
}{ ... }
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint32_t optiondata, optiondata2;
stm32x_info = bank->driver_priv;
int retval = stm32x_unlock_option_reg(target);
if (retval != ERROR_OK)
return retval;
optiondata = stm32x_info->option_bytes.user_options & 0xfc;
optiondata |= stm32x_info->option_bytes.RDP << 8;
optiondata |= (stm32x_info->option_bytes.protection &
(~(0xffff << stm32x_info->protection_bits))) << 16;
if (stm32x_info->has_extra_options) {
optiondata |= (stm32x_info->option_bytes.user_options &
((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
}if (stm32x_info->has_extra_options) { ... }
if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
if (stm32x_info->has_boot_addr) {
optiondata2 = stm32x_info->option_bytes.boot_addr;
}if (stm32x_info->has_boot_addr) { ... } else {
optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
}else { ... }
retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
if (retval != ERROR_OK)
return retval;
}if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) { ... }
if (stm32x_info->has_optcr2_pcrop) {
retval = target_write_u32(target, STM32_FLASH_OPTCR2,
stm32x_info->option_bytes.optcr2_pcrop);
if (retval != ERROR_OK)
return retval;
}if (stm32x_info->has_optcr2_pcrop) { ... }
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}{ ... }
static int stm32x_otp_read_protect(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t lock_base;
int retval;
uint8_t lock;
lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
: STM32F2_OTP_LOCK_BASE;
for (unsigned int i = 0; i < bank->num_sectors; i++) {
retval = target_read_u8(target, lock_base + i, &lock);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_protected = !lock;
}for (unsigned int i = 0; i < bank->num_sectors; i++) { ... }
return ERROR_OK;
}{ ... }
static int stm32x_otp_protect(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
uint32_t lock_base;
int i, retval;
uint8_t lock;
assert((first <= last) && (last < bank->num_sectors));
lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
: STM32F2_OTP_LOCK_BASE;
for (i = first; first <= last; i++) {
retval = target_read_u8(target, lock_base + i, &lock);
if (retval != ERROR_OK)
return retval;
if (lock)
continue;
lock = 0xff;
retval = target_write_u8(target, lock_base + i, lock);
if (retval != ERROR_OK)
return retval;
}for (i = first; first <= last; i++) { ... }
return ERROR_OK;
}{ ... }
static int stm32x_protect_check(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct flash_sector *prot_blocks;
unsigned int num_prot_blocks;
int retval;
if (stm32x_is_otp(bank))
return stm32x_otp_read_protect(bank);
retval = stm32x_read_options(bank);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}if (retval != ERROR_OK) { ... }
if (bank->prot_blocks) {
num_prot_blocks = bank->num_prot_blocks;
prot_blocks = bank->prot_blocks;
}if (bank->prot_blocks) { ... } else {
num_prot_blocks = bank->num_sectors;
prot_blocks = bank->sectors;
}else { ... }
for (unsigned int i = 0; i < num_prot_blocks; i++)
prot_blocks[i].is_protected =
~(stm32x_info->option_bytes.protection >> i) & 1;
return ERROR_OK;
}{ ... }
static int stm32x_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
if (stm32x_is_otp(bank)) {
LOG_ERROR("Cannot erase OTP memory");
return ERROR_FAIL;
}if (stm32x_is_otp(bank)) { ... }
assert((first <= last) && (last < bank->num_sectors));
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
int retval;
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/* ... */
for (unsigned int i = first; i <= last; i++) {
unsigned int snb;
if (stm32x_info->has_large_mem && i >= (bank->num_sectors / 2))
snb = (i - (bank->num_sectors / 2)) | 0x10;
else
snb = i;
retval = target_write_u32(target,
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
if (target->report_flash_progress)
report_flash_progress("flash_erase_progress", bank->base + bank->sectors[i].offset, bank->base + bank->sectors[i].offset + bank->sectors[i].size, bank->name);
}for (unsigned int i = first; i <= last; i++) { ... }
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}{ ... }
static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
if (stm32x_is_otp(bank)) {
if (!set) {
LOG_ERROR("OTP protection can only be enabled");
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (!set) { ... }
return stm32x_otp_protect(bank, first, last);
}if (stm32x_is_otp(bank)) { ... }
int retval = stm32x_read_options(bank);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}if (retval != ERROR_OK) { ... }
for (unsigned int i = first; i <= last; i++) {
if (set)
stm32x_info->option_bytes.protection &= ~(1 << i);
else
stm32x_info->option_bytes.protection |= (1 << i);
}for (unsigned int i = first; i <= last; i++) { ... }
retval = stm32x_write_options(bank);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}{ ... }
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32x_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
...};
if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
LOG_ERROR("OTP memory bank is disabled for write commands.");
return ERROR_FAIL;
}if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) { ... }
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &write_algorithm) != ERROR_OK) { ... }
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code),
stm32x_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}if (retval != ERROR_OK) { ... }
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* ... */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (buffer_size <= 256) { ... }
}while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { ... }
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_OUT);
init_reg_param(®_params[4], "r4", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
if (target->report_flash_progress)
report_flash_progress("flash_write_start", address, address + count * 2, bank->name);
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (target->report_flash_progress)
LOG_INFO("flash_write_done:%s", bank->name);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32x flash write algorithm");
uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
if (error & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if (error != 0) {
LOG_ERROR("flash write failed = 0x%08" PRIx32, error);
target_write_u32(target, STM32_FLASH_SR, error);
retval = ERROR_FAIL;
}if (error != 0) { ... }
}if (retval == ERROR_FLASH_OPERATION_FAILED) { ... }
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
return retval;
}{ ... }
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t words_remaining = (count / 2);
uint32_t bytes_remaining = (count & 0x00000001);
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
if (offset & 0x1) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}if (offset & 0x1) { ... }
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
if (words_remaining > 0) {
retval = stm32x_write_block(bank, buffer, offset, words_remaining);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* ... */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { ... }
}if (retval != ERROR_OK) { ... } else {
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}else { ... }
}if (words_remaining > 0) { ... }
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
return retval;
/* ... */
while (words_remaining > 0) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_PG | FLASH_PSIZE_16);
if (retval != ERROR_OK)
return retval;
retval = target_write_memory(target, address, 2, 1, buffer + bytes_written);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
bytes_written += 2;
words_remaining--;
address += 2;
}while (words_remaining > 0) { ... }
if (bytes_remaining) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_PG | FLASH_PSIZE_8);
if (retval != ERROR_OK)
return retval;
retval = target_write_u8(target, address, buffer[bytes_written]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
}if (bytes_remaining) { ... }
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
}{ ... }
static void setup_sector(struct flash_bank *bank, unsigned int i,
unsigned int size)
{
assert(i < bank->num_sectors);
bank->sectors[i].offset = bank->size;
bank->sectors[i].size = size;
bank->size += bank->sectors[i].size;
LOG_DEBUG("sector %u: %ukBytes", i, size >> 10);
}{ ... }
static uint16_t sector_size_in_kb(unsigned int i, uint16_t max_sector_size_in_kb)
{
if (i < 4)
return max_sector_size_in_kb / 8;
if (i == 4)
return max_sector_size_in_kb / 2;
return max_sector_size_in_kb;
}{ ... }
static unsigned int calculate_number_of_sectors(struct flash_bank *bank,
uint16_t flash_size_in_kb,
uint16_t max_sector_size_in_kb)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
unsigned int nr_sectors;
if (stm32x_info->has_large_mem)
remaining_flash_size_in_kb /= 2;
for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
if (size_in_kb > remaining_flash_size_in_kb) {
LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
stm32x_info->has_large_mem ? "Dual" : "Single",
flash_size_in_kb, remaining_flash_size_in_kb);
remaining_flash_size_in_kb = 0;
}if (size_in_kb > remaining_flash_size_in_kb) { ... } else {
remaining_flash_size_in_kb -= size_in_kb;
}else { ... }
}for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) { ... }
return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
}{ ... }
static void setup_bank(struct flash_bank *bank, unsigned int start,
uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
{
uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
unsigned int sector_index = 0;
while (remaining_flash_size_in_kb > 0) {
uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
if (size_in_kb > remaining_flash_size_in_kb) {
/* ... */
size_in_kb = remaining_flash_size_in_kb;
}if (size_in_kb > remaining_flash_size_in_kb) { ... }
setup_sector(bank, start + sector_index, size_in_kb * 1024);
remaining_flash_size_in_kb -= size_in_kb;
sector_index++;
}while (remaining_flash_size_in_kb > 0) { ... }
}{ ... }
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
{
/* ... */
struct target *target = bank->target;
int retval = target_read_u32(target, 0xE0042000, device_id);
if (retval != ERROR_OK)
return retval;
if ((*device_id & 0xfff) == 0x411
&& cortex_m_get_impl_part(target) == CORTEX_M4_PARTNO) {
*device_id &= ~((0xFFFF << 16) | 0xfff);
*device_id |= (0x1000 << 16) | 0x413;
LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
}if ((*device_id & 0xfff) == 0x411 && cortex_m_get_impl_part(target) == CORTEX_M4_PARTNO) { ... }
return retval;
}{ ... }
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
unsigned int num_prot_blocks, num_sectors;
uint16_t flash_size_in_kb;
uint16_t otp_size_in_b;
uint16_t otp_sector_size;
uint32_t flash_size_reg = 0x1FFF7A22;
uint16_t max_sector_size_in_kb = 128;
uint16_t max_flash_size_in_kb;
uint32_t device_id;
uint32_t base_address = 0x08000000;
stm32x_info->probed = false;
stm32x_info->has_large_mem = false;
stm32x_info->has_boot_addr = false;
stm32x_info->has_extra_options = false;
stm32x_info->has_optcr2_pcrop = false;
stm32x_info->protection_bits = 12;
num_prot_blocks = 0;
free(bank->sectors);
bank->num_sectors = 0;
bank->sectors = NULL;
free(bank->prot_blocks);
bank->num_prot_blocks = 0;
bank->prot_blocks = NULL;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_TARGET_NOT_EXAMINED;
}if (!target_was_examined(target)) { ... }
if (stm32x_is_otp(bank)) {
if (stm32x_otp_is_f7(bank)) {
otp_size_in_b = STM32F7_OTP_SIZE;
otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
}if (stm32x_otp_is_f7(bank)) { ... } else {
otp_size_in_b = STM32F2_OTP_SIZE;
otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
}else { ... }
num_sectors = otp_size_in_b / otp_sector_size;
LOG_INFO("flash size = %" PRIu16 " bytes", otp_size_in_b);
assert(num_sectors > 0);
bank->num_sectors = num_sectors;
bank->sectors = calloc(num_sectors, sizeof(struct flash_sector));
if (stm32x_otp_is_f7(bank))
bank->size = STM32F7_OTP_SIZE;
else
bank->size = STM32F2_OTP_SIZE;
for (unsigned int i = 0; i < num_sectors; i++) {
bank->sectors[i].offset = i * otp_sector_size;
bank->sectors[i].size = otp_sector_size;
bank->sectors[i].is_erased = 1;
bank->sectors[i].is_protected = 0;
}for (unsigned int i = 0; i < num_sectors; i++) { ... }
stm32x_info->probed = true;
return ERROR_OK;
}if (stm32x_is_otp(bank)) { ... }
int retval = stm32x_get_device_id(bank, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32, device_id);
device_id &= 0xfff;
switch (device_id) {
case 0x411:
case 0x413:
max_flash_size_in_kb = 1024;
break;
case 0x413:
case 0x419:
case 0x434:
stm32x_info->has_extra_options = true;
max_flash_size_in_kb = 2048;
break;
case 0x434:
case 0x423:
max_flash_size_in_kb = 256;
break;
case 0x423:
case 0x421:
case 0x431:
case 0x433:
case 0x441:
max_flash_size_in_kb = 512;
break;
case 0x441:
case 0x458:
max_flash_size_in_kb = 128;
break;
case 0x458:
case 0x449:
max_flash_size_in_kb = 1024;
max_sector_size_in_kb = 256;
flash_size_reg = 0x1FF0F442;
stm32x_info->has_extra_options = true;
stm32x_info->has_boot_addr = true;
break;
case 0x449:
case 0x451:
max_flash_size_in_kb = 2048;
max_sector_size_in_kb = 256;
flash_size_reg = 0x1FF0F442;
stm32x_info->has_extra_options = true;
stm32x_info->has_boot_addr = true;
break;
case 0x451:
case 0x452:
max_flash_size_in_kb = 512;
flash_size_reg = 0x1FF07A22;
stm32x_info->has_extra_options = true;
stm32x_info->has_boot_addr = true;
stm32x_info->has_optcr2_pcrop = true;
break;
case 0x452:
case 0x463:
max_flash_size_in_kb = 1536;
stm32x_info->has_extra_options = true;
stm32x_info->protection_bits = 15;
num_prot_blocks = 15;
break;
case 0x463:
default:
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;default
}switch (device_id) { ... }
retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
/* ... */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %" PRIu16 "k flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { ... }
/* ... */
if (stm32x_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
}if (stm32x_info->user_bank_size) { ... }
LOG_INFO("flash size = %" PRIu16 " KiB", flash_size_in_kb);
assert(flash_size_in_kb != 0xffff);
if ((device_id == 0x419) || (device_id == 0x434)) {
uint32_t optiondata;
retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}if (retval != ERROR_OK) { ... }
if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
stm32x_info->has_large_mem = true;
LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
}if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) { ... } else {
stm32x_info->has_large_mem = false;
LOG_INFO("Single Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
}else { ... }
}if ((device_id == 0x419) || (device_id == 0x434)) { ... }
if (device_id == 0x451) {
uint32_t optiondata;
retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}if (retval != ERROR_OK) { ... }
if (optiondata & OPTCR_NDBANK) {
stm32x_info->has_large_mem = false;
LOG_INFO("Single Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
}if (optiondata & OPTCR_NDBANK) { ... } else {
stm32x_info->has_large_mem = true;
max_sector_size_in_kb >>= 1;
LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
}else { ... }
}if (device_id == 0x451) { ... }
unsigned int num_pages = calculate_number_of_sectors(
bank, flash_size_in_kb, max_sector_size_in_kb);
bank->base = base_address;
bank->num_sectors = num_pages;
bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
for (unsigned int i = 0; i < num_pages; i++) {
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 0;
}for (unsigned int i = 0; i < num_pages; i++) { ... }
bank->size = 0;
LOG_DEBUG("allocated %u sectors", num_pages);
if ((device_id == 0x451) && stm32x_info->has_large_mem)
num_prot_blocks = num_pages >> 1;
if (num_prot_blocks) {
bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
for (unsigned int i = 0; i < num_prot_blocks; i++)
bank->prot_blocks[i].is_protected = 0;
LOG_DEBUG("allocated %u prot blocks", num_prot_blocks);
}if (num_prot_blocks) { ... }
if (stm32x_info->has_large_mem) {
setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
max_sector_size_in_kb);
if (device_id == 0x451) {
for (unsigned int i = 0; i < num_prot_blocks; i++) {
bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
bank->prot_blocks[i].size = bank->sectors[i << 1].size
+ bank->sectors[(i << 1) + 1].size;
}for (unsigned int i = 0; i < num_prot_blocks; i++) { ... }
}if (device_id == 0x451) { ... }
}if (stm32x_info->has_large_mem) { ... } else {
setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
if (device_id == 0x463) {
for (unsigned int i = 0; i < num_prot_blocks; i++) {
bank->prot_blocks[i].offset = bank->sectors[i].offset;
bank->prot_blocks[i].size = bank->sectors[i].size;
}for (unsigned int i = 0; i < num_prot_blocks; i++) { ... }
bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
}if (device_id == 0x463) { ... }
}else { ... }
bank->num_prot_blocks = num_prot_blocks;
assert((bank->size >> 10) == flash_size_in_kb);
stm32x_info->probed = true;
return ERROR_OK;
}{ ... }
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}{ ... }
static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
{
uint32_t dbgmcu_idcode;
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint16_t rev_id = dbgmcu_idcode >> 16;
const char *device_str;
const char *rev_str = NULL;
switch (device_id) {
case 0x411:
device_str = "STM32F2xx";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x2000:
rev_str = "B";
break;
case 0x2000:
case 0x1001:
rev_str = "Z";
break;
case 0x1001:
case 0x2001:
rev_str = "Y";
break;
case 0x2001:
case 0x2003:
rev_str = "X";
break;
case 0x2003:
case 0x2007:
rev_str = "1";
break;
case 0x2007:
case 0x200F:
rev_str = "V";
break;
case 0x200F:
case 0x201F:
rev_str = "2";
break;case 0x201F:
}switch (rev_id) { ... }
break;
case 0x411:
case 0x413:
case 0x419:
case 0x434:
device_str = "STM32F4xx";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;
case 0x1001:
case 0x1003:
rev_str = "Y";
break;
case 0x1003:
case 0x1007:
rev_str = "1";
break;
case 0x1007:
case 0x2001:
rev_str = "3";
break;case 0x2001:
}switch (rev_id) { ... }
break;
case 0x434:
case 0x421:
device_str = "STM32F446";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;case 0x1000:
}switch (rev_id) { ... }
break;
case 0x421:
case 0x423:
case 0x431:
case 0x433:
case 0x458:
case 0x441:
device_str = "STM32F4xx (Low Power)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;
case 0x1001:
case 0x2000:
rev_str = "B";
break;
case 0x2000:
case 0x3000:
rev_str = "C";
break;case 0x3000:
}switch (rev_id) { ... }
break;
case 0x441:
case 0x449:
device_str = "STM32F7[4|5]x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;case 0x1001:
}switch (rev_id) { ... }
break;
case 0x449:
case 0x451:
device_str = "STM32F7[6|7]x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;case 0x1000:
case 0x1001:
rev_str = "Z";
break;case 0x1001:
}switch (rev_id) { ... }
break;
case 0x451:
case 0x452:
device_str = "STM32F7[2|3]x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;case 0x1000:
}switch (rev_id) { ... }
break;
case 0x452:
case 0x463:
device_str = "STM32F4[1|2]3";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;case 0x1000:
}switch (rev_id) { ... }
break;
case 0x463:
default:
command_print_sameline(cmd, "Cannot identify target as a STM32F2/4/7\n");
return ERROR_FAIL;default
}switch (device_id) { ... }
if (rev_str)
command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
else
command_print_sameline(cmd, "%s - Rev: unknown (0x%04" PRIx16 ")", device_str, rev_id);
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_INFO("Target not halted");
}if (target->state != TARGET_HALTED) { ... }
if (stm32x_read_options(bank) != ERROR_OK) {
command_print(CMD, "%s failed to read options", bank->driver->name);
return ERROR_OK;
}if (stm32x_read_options(bank) != ERROR_OK) { ... }
stm32x_info->option_bytes.RDP = 0;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "%s failed to lock device", bank->driver->name);
return ERROR_OK;
}if (stm32x_write_options(bank) != ERROR_OK) { ... }
command_print(CMD, "%s locked", bank->driver->name);
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_INFO("Target not halted");
}if (target->state != TARGET_HALTED) { ... }
if (stm32x_read_options(bank) != ERROR_OK) {
command_print(CMD, "%s failed to read options", bank->driver->name);
return ERROR_OK;
}if (stm32x_read_options(bank) != ERROR_OK) { ... }
/* ... */
stm32x_info->option_bytes.RDP = 0xAA;
if (stm32x_info->has_optcr2_pcrop) {
stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
}if (stm32x_info->has_optcr2_pcrop) { ... }
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "%s failed to unlock device", bank->driver->name);
return ERROR_OK;
}if (stm32x_write_options(bank) != ERROR_OK) { ... }
command_print(CMD, "%s unlocked.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
return ERROR_OK;
}{ ... }
static int stm32x_mass_erase(struct flash_bank *bank)
{
int retval;
uint32_t flash_mer;
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = NULL;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
stm32x_info = bank->driver_priv;
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
if (stm32x_info->has_large_mem)
flash_mer = FLASH_MER | FLASH_MER1;
else
flash_mer = FLASH_MER;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
flash_mer | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK) {
command_print(CMD, "stm32x mass erase complete");
}if (retval == ERROR_OK) { ... } else {
command_print(CMD, "stm32x mass erase failed");
}else { ... }
return retval;
}{ ... }
COMMAND_HANDLER(stm32f2x_handle_options_read_command)
{
int retval;
struct flash_bank *bank;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
if (stm32x_info->has_extra_options) {
if (stm32x_info->has_boot_addr) {
uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
command_print(CMD, "stm32f2x user_options 0x%03" PRIX16 ","
" boot_add0 0x%04" PRIX32 ", boot_add1 0x%04" PRIX32,
stm32x_info->option_bytes.user_options,
boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
if (stm32x_info->has_optcr2_pcrop) {
command_print(CMD, "stm32f2x optcr2_pcrop 0x%08" PRIX32,
stm32x_info->option_bytes.optcr2_pcrop);
}if (stm32x_info->has_optcr2_pcrop) { ... }
}if (stm32x_info->has_boot_addr) { ... } else {
command_print(CMD, "stm32f2x user_options 0x%03" PRIX16,
stm32x_info->option_bytes.user_options);
}else { ... }
}if (stm32x_info->has_extra_options) { ... } else {
command_print(CMD, "stm32f2x user_options 0x%02" PRIX16,
stm32x_info->option_bytes.user_options);
}else { ... }
return retval;
}{ ... }
COMMAND_HANDLER(stm32f2x_handle_options_write_command)
{
int retval;
struct flash_bank *bank;
struct stm32x_flash_bank *stm32x_info = NULL;
uint16_t user_options, boot_addr0, boot_addr1, options_mask;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
if (stm32x_info->has_boot_addr) {
if (CMD_ARGC != 4)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
}if (stm32x_info->has_boot_addr) { ... } else if (CMD_ARGC != 2) {
return ERROR_COMMAND_SYNTAX_ERROR;
}else if (CMD_ARGC != 2) { ... }
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
options_mask = !stm32x_info->has_extra_options ? ~0xfc :
~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
if (user_options & options_mask) {
command_print(CMD, "stm32f2x invalid user_options");
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (user_options & options_mask) { ... }
stm32x_info->option_bytes.user_options = user_options;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32f2x failed to write options");
return ERROR_OK;
}if (stm32x_write_options(bank) != ERROR_OK) { ... }
stm32x_info->probed = false;
command_print(CMD, "stm32f2x write options complete.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return retval;
}{ ... }
COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
{
int retval;
struct flash_bank *bank;
struct stm32x_flash_bank *stm32x_info = NULL;
uint32_t optcr2_pcrop;
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
if (!stm32x_info->has_optcr2_pcrop) {
command_print(CMD, "no optcr2 register");
return ERROR_COMMAND_ARGUMENT_INVALID;
}if (!stm32x_info->has_optcr2_pcrop) { ... }
command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
" with PCROPi bits STILL SET, then\nlock device and"
" finally unlock it. Clears PCROP and mass erases flash.");
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32f2x failed to write options");
return ERROR_OK;
}if (stm32x_write_options(bank) != ERROR_OK) { ... }
command_print(CMD, "stm32f2x optcr2_write complete.");
return retval;
}{ ... }
COMMAND_HANDLER(stm32x_handle_otp_command)
{
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (stm32x_is_otp(bank)) {
if (strcmp(CMD_ARGV[1], "enable") == 0) {
stm32x_otp_enable(bank);
}if (strcmp(CMD_ARGV[1], "enable") == 0) { ... } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
stm32x_otp_disable(bank);
}else if (strcmp(CMD_ARGV[1], "disable") == 0) { ... } else if (strcmp(CMD_ARGV[1], "show") == 0) {
command_print(CMD,
"OTP memory bank #%u is %s for write commands.",
bank->bank_number,
stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
}else if (strcmp(CMD_ARGV[1], "show") == 0) { ... } else {
return ERROR_COMMAND_SYNTAX_ERROR;
}else { ... }
}if (stm32x_is_otp(bank)) { ... } else {
command_print(CMD, "Failed: not an OTP bank.");
}else { ... }
return retval;
}{ ... }
static const struct command_registration stm32f2x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
...},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
...},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
...},
{
.name = "options_read",
.handler = stm32f2x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option bytes.",
...},
{
.name = "options_write",
.handler = stm32f2x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id user_options [ boot_add0 boot_add1 ]",
.help = "Write option bytes",
...},
{
.name = "optcr2_write",
.handler = stm32f2x_handle_optcr2_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id optcr2",
.help = "Write optcr2 word",
...},
{
.name = "otp",
.handler = stm32x_handle_otp_command,
.mode = COMMAND_EXEC,
.usage = "bank_id (enable|disable|show)",
.help = "OTP (One Time Programmable) memory write enable/disable.",
...},
COMMAND_REGISTRATION_DONE
...};
static const struct command_registration stm32f2x_command_handlers[] = {
{
.name = "stm32f2x",
.mode = COMMAND_ANY,
.help = "stm32f2x flash command group",
.usage = "",
.chain = stm32f2x_exec_command_handlers,
...},
COMMAND_REGISTRATION_DONE
...};
const struct flash_driver stm32f2x_flash = {
.name = "stm32f2x",
.commands = stm32f2x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
.free_driver_priv = default_flash_free_driver_priv,
...};