1
2
3
13
14
15
16
17
18
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
155
156
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
180
181
182
183
187
188
192
193
194
201
202
203
204
205
206
207
208
210
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
333
334
335
336
341
342
343
344
345
346
347
348
349
350
351
352
353
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
411
412
413
414
415
416
417
418
419
420
424
425
426
427
428
429
430
434
435
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
459
460
461
466
467
468
469
473
474
475
476
477
483
484
485
486
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
553
554
555
560
561
562
563
567
568
569
570
571
572
573
574
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
620
621
624
625
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
650
651
652
653
654
655
658
659
660
661
662
669
670
671
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
701
702
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
738
739
740
741
745
746
747
748
752
756
760
764
776
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
905
906
911
916
921
927
932
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
977
978
979
980
981
982
984
989
990
1002
1003
1005
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1066
1067
1068
1069
1070
1071
1072
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1106
1110
1114
1118
1122
1126
1130
1133
1134
1135
1136
1146
1164
1178
1192
1214
1228
1238
1252
1262
1276
1281
1286
1291
1300
1305
1310
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1344
1345
1346
1347
1348
1349
1353
1354
1355
1356
1357
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1385
1386
1387
1388
1389
1390
1394
1395
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1549
1550
1551
1552
1553
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1584
1585
1586
1587
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
/* ... */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string.h>
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/cortex_m.h>
5 includes
#define FLASH_REG_BASE_B0 0x40022000
#define FLASH_REG_BASE_B1 0x40022040
#define STM32_FLASH_ACR 0x00
#define STM32_FLASH_KEYR 0x04
#define STM32_FLASH_OPTKEYR 0x08
#define STM32_FLASH_SR 0x0C
#define STM32_FLASH_CR 0x10
#define STM32_FLASH_AR 0x14
#define STM32_FLASH_OBR 0x1C
#define STM32_FLASH_WRPR 0x20
/* ... */
#define STM32_FLASH_ACR_B0 0x40022000
#define STM32_FLASH_KEYR_B0 0x40022004
#define STM32_FLASH_OPTKEYR_B0 0x40022008
#define STM32_FLASH_SR_B0 0x4002200C
#define STM32_FLASH_CR_B0 0x40022010
#define STM32_FLASH_AR_B0 0x40022014
#define STM32_FLASH_OBR_B0 0x4002201C
#define STM32_FLASH_WRPR_B0 0x40022020
#define STM32_OB_RDP 0x1FFFF800
#define STM32_OB_USER 0x1FFFF802
#define STM32_OB_DATA0 0x1FFFF804
#define STM32_OB_DATA1 0x1FFFF806
#define STM32_OB_WRP0 0x1FFFF808
#define STM32_OB_WRP1 0x1FFFF80A
#define STM32_OB_WRP2 0x1FFFF80C
#define STM32_OB_WRP3 0x1FFFF80E
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER (1 << 2)
#define FLASH_OPTPG (1 << 4)
#define FLASH_OPTER (1 << 5)
#define FLASH_STRT (1 << 6)
#define FLASH_LOCK (1 << 7)
#define FLASH_OPTWRE (1 << 9)
#define FLASH_OBL_LAUNCH (1 << 13)
#define FLASH_BSY (1 << 0)
#define FLASH_PGERR (1 << 2)
#define FLASH_WRPRTERR (1 << 4)
#define FLASH_EOP (1 << 5)
#define OPT_ERROR 0
#define OPT_READOUT 1
#define OPT_RDWDGSW 2
#define OPT_RDRSTSTOP 3
#define OPT_RDRSTSTDBY 4
#define OPT_BFB2 5
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
#define FLASH_WRITE_TIMEOUT 10
#define FLASH_ERASE_TIMEOUT 100
49 defines
struct stm32x_options {
uint8_t rdp;
uint8_t user;
uint16_t data;
uint32_t protection;
...};
struct stm32x_flash_bank {
struct stm32x_options option_bytes;
int ppage_size;
bool probed;
bool has_dual_banks;
bool can_load_options;
uint32_t register_base;
uint8_t default_rdp;
int user_data_offset;
int option_offset;
uint32_t user_bank_size;
...};
static int stm32x_mass_erase(struct flash_bank *bank);
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count);
/* ... */
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = false;
stm32x_info->has_dual_banks = false;
stm32x_info->can_load_options = false;
stm32x_info->register_base = FLASH_REG_BASE_B0;
stm32x_info->user_bank_size = bank->size;
bank->write_start_alignment = bank->write_end_alignment = 2;
return ERROR_OK;
}{ ... }
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
return reg + stm32x_info->register_base;
}{ ... }
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
}{ ... }
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FLASH_BUSY;
}if (timeout-- <= 0) { ... }
alive_sleep(1);
}for (;;) { ... }
if (status & FLASH_WRPRTERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FLASH_PROTECTED;
}if (status & FLASH_WRPRTERR) { ... }
if (status & FLASH_PGERR) {
LOG_ERROR("stm32x device programming failed / flash not erased");
retval = ERROR_FLASH_OPERATION_FAILED;
}if (status & FLASH_PGERR) { ... }
if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
/* ... */
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
FLASH_WRPRTERR | FLASH_PGERR);
}if (status & (FLASH_WRPRTERR | FLASH_PGERR)) { ... }
return retval;
}{ ... }
static int stm32x_check_operation_supported(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
/* ... */
if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
LOG_ERROR("Option byte operations must use bank 0");
return ERROR_FLASH_OPERATION_FAILED;
}if (stm32x_info->register_base != FLASH_REG_BASE_B0) { ... }
return ERROR_OK;
}{ ... }
static int stm32x_read_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t option_bytes;
int retval;
retval = target_read_u32(target, STM32_FLASH_OBR_B0, &option_bytes);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.rdp = (option_bytes & (1 << OPT_READOUT)) ? 0 : stm32x_info->default_rdp;
stm32x_info->option_bytes.user = (option_bytes >> stm32x_info->option_offset >> 2) & 0xff;
stm32x_info->option_bytes.data = (option_bytes >> stm32x_info->user_data_offset) & 0xffff;
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &stm32x_info->option_bytes.protection);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}{ ... }
static int stm32x_erase_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
stm32x_read_options(bank);
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
/* ... */
stm32x_info->option_bytes.rdp = stm32x_info->default_rdp;
return ERROR_OK;
flash_lock:
target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
return retval;
}{ ... }
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
uint8_t opt_bytes[16];
target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.rdp);
target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user);
target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.data & 0xff);
target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.data >> 8) & 0xff);
target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection & 0xff);
target_buffer_set_u16(target, opt_bytes + 10, (stm32x_info->option_bytes.protection >> 8) & 0xff);
target_buffer_set_u16(target, opt_bytes + 12, (stm32x_info->option_bytes.protection >> 16) & 0xff);
target_buffer_set_u16(target, opt_bytes + 14, (stm32x_info->option_bytes.protection >> 24) & 0xff);
/* ... */
retval = stm32x_write_block(bank, opt_bytes, STM32_OB_RDP, sizeof(opt_bytes) / 2);
flash_lock:
{
int retval2 = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
...}
return retval;
}{ ... }
static int stm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t protection;
int retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
/* ... */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
for (unsigned int i = 0; i < bank->num_prot_blocks; i++)
bank->prot_blocks[i].is_protected = (protection & (1 << i)) ? 0 : 1;
return ERROR_OK;
}{ ... }
static int stm32x_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
if ((first == 0) && (last == (bank->num_sectors - 1)))
return stm32x_mass_erase(bank);
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto flash_lock;
for (unsigned int i = first; i <= last; i++) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
bank->base + bank->sectors[i].offset);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target,
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
}for (unsigned int i = first; i <= last; i++) { ... }
flash_lock:
{
int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
...}
return retval;
}{ ... }
static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
int retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_erase_options(bank);
if (retval != ERROR_OK) {
LOG_ERROR("stm32x failed to erase options");
return retval;
}if (retval != ERROR_OK) { ... }
for (unsigned int i = first; i <= last; i++) {
if (set)
stm32x_info->option_bytes.protection &= ~(1 << i);
else
stm32x_info->option_bytes.protection |= (1 << i);
}for (unsigned int i = first; i <= last; i++) { ... }
return stm32x_write_options(bank);
}{ ... }
static int stm32x_write_block_async(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
struct armv7m_algorithm armv7m_info;
int retval;
static const uint8_t stm32x_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32f1x.inc"
...};
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &write_algorithm) != ERROR_OK) { ... }
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}if (retval != ERROR_OK) { ... }
buffer_size = target_get_working_area_avail(target);
buffer_size = MIN(hwords_count * 2 + 8, MAX(buffer_size, 256));
/* ... */
retval = target_alloc_working_area(target, buffer_size, &source);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
/* ... */
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (retval != ERROR_OK) { ... }
struct reg_param reg_params[5];
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_OUT);
init_reg_param(®_params[4], "r4", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
buf_set_u32(reg_params[1].value, 0, 32, hwords_count);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
retval = target_run_flash_async_algorithm(target, buffer, hwords_count, 2,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
/* ... */
int retval2 = stm32x_wait_status_busy(bank, 5);
if (retval2 != ERROR_OK)
retval = retval2;
LOG_ERROR("flash write failed just before address 0x%"PRIx32,
buf_get_u32(reg_params[4].value, 0, 32));
}if (retval == ERROR_FLASH_OPERATION_FAILED) { ... }
for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(®_params[i]);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
return retval;
}{ ... }
static int stm32x_write_block_riscv(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count)
{
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
static const uint8_t gd32vf103_flash_write_code[] = {
#include "../../../contrib/loaders/flash/gd32vf103/gd32vf103.inc"
...};
if (target_alloc_working_area(target, sizeof(gd32vf103_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (target_alloc_working_area(target, sizeof(gd32vf103_flash_write_code), &write_algorithm) != ERROR_OK) { ... }
int retval = target_write_buffer(target, write_algorithm->address,
sizeof(gd32vf103_flash_write_code), gd32vf103_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}if (retval != ERROR_OK) { ... }
buffer_size = target_get_working_area_avail(target);
buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
retval = target_alloc_working_area(target, buffer_size, &source);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
/* ... */
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}if (retval != ERROR_OK) { ... }
struct reg_param reg_params[4];
init_reg_param(®_params[0], "a0", 32, PARAM_OUT);
init_reg_param(®_params[1], "a1", 32, PARAM_OUT);
init_reg_param(®_params[2], "a2", 32, PARAM_OUT);
init_reg_param(®_params[3], "a3", 32, PARAM_IN_OUT);
while (hwords_count > 0) {
uint32_t thisrun_hwords = source->size / 2;
if (thisrun_hwords > hwords_count)
thisrun_hwords = hwords_count;
retval = target_write_buffer(target, source->address,
thisrun_hwords * 2, buffer);
if (retval != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, stm32x_get_flash_reg(bank, STM32_FLASH_SR));
buf_set_u32(reg_params[1].value, 0, 32, thisrun_hwords);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, address);
retval = target_run_algorithm(target,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
write_algorithm->address,
write_algorithm->address + sizeof(gd32vf103_flash_write_code) - 4,
10000, NULL);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to execute algorithm at 0x%" TARGET_PRIxADDR ": %d",
write_algorithm->address, retval);
break;
}if (retval != ERROR_OK) { ... }
/* ... */
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK) {
LOG_ERROR("flash write failed at address 0x%"PRIx32,
buf_get_u32(reg_params[3].value, 0, 32));
break;
}if (retval != ERROR_OK) { ... }
buffer += thisrun_hwords * 2;
address += thisrun_hwords * 2;
hwords_count -= thisrun_hwords;
}while (hwords_count > 0) { ... }
for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(®_params[i]);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
return retval;
}{ ... }
/* ... */
static int stm32x_write_block(struct flash_bank *bank,
const uint8_t *buffer, uint32_t address, uint32_t hwords_count)
{
struct target *target = bank->target;
/* ... */
assert(address % 2 == 0);
int retval;
struct arm *arm = target_to_arm(target);
if (is_arm(arm)) {
retval = stm32x_write_block_async(bank, buffer, address, hwords_count);
}if (is_arm(arm)) { ... } else {
retval = stm32x_write_block_riscv(bank, buffer, address, hwords_count);
}else { ... }
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* ... */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
while (hwords_count > 0) {
retval = target_write_memory(target, address, 2, 1, buffer);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK)
return retval;
hwords_count--;
buffer += 2;
address += 2;
}while (hwords_count > 0) { ... }
}if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { ... }
return retval;
}{ ... }
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
/* ... */
assert(offset % 2 == 0);
assert(count % 2 == 0);
int retval, retval2;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
retval = stm32x_write_block(bank, buffer, bank->base + offset, count / 2);
reset_pg_and_lock:
retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
return retval;
}{ ... }
struct stm32x_property_addr {
uint32_t device_id;
uint32_t flash_size;
...};
static int stm32x_get_property_addr(struct target *target, struct stm32x_property_addr *addr)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_TARGET_NOT_EXAMINED;
}if (!target_was_examined(target)) { ... }
switch (cortex_m_get_impl_part(target)) {
case CORTEX_M0_PARTNO:
case CORTEX_M0P_PARTNO:
addr->device_id = 0x40015800;
addr->flash_size = 0x1FFFF7CC;
return ERROR_OK;case CORTEX_M0P_PARTNO:
case CORTEX_M3_PARTNO:
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;case CORTEX_M3_PARTNO:
case CORTEX_M4_PARTNO:
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7CC;
return ERROR_OK;case CORTEX_M4_PARTNO:
case CORTEX_M23_PARTNO:
addr->device_id = 0x40015800;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;case CORTEX_M23_PARTNO:
case CORTEX_M_PARTNO_INVALID:
if (strcmp(target_type_name(target), "riscv") == 0
&& target_address_bits(target) == 32) {
/* ... */
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;
}if (strcmp(target_type_name(target), "riscv") == 0 && target_address_bits(target) == 32) { ... }
case CORTEX_M_PARTNO_INVALID:
default:
LOG_ERROR("Cannot identify target as a stm32x");
return ERROR_FAIL;default
}switch (cortex_m_get_impl_part(target)) { ... }
}{ ... }
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
{
struct target *target = bank->target;
struct stm32x_property_addr addr;
int retval = stm32x_get_property_addr(target, &addr);
if (retval != ERROR_OK)
return retval;
return target_read_u32(target, addr.device_id, device_id);
}{ ... }
static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
{
struct target *target = bank->target;
struct stm32x_property_addr addr;
int retval = stm32x_get_property_addr(target, &addr);
if (retval != ERROR_OK)
return retval;
return target_read_u16(target, addr.flash_size, flash_size_in_kb);
}{ ... }
static int stm32x_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint16_t flash_size_in_kb;
uint16_t max_flash_size_in_kb;
uint32_t dbgmcu_idcode;
int page_size;
uint32_t base_address = 0x08000000;
stm32x_info->probed = false;
stm32x_info->register_base = FLASH_REG_BASE_B0;
stm32x_info->user_data_offset = 10;
stm32x_info->option_offset = 0;
stm32x_info->default_rdp = 0xA5;
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", dbgmcu_idcode);
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint16_t rev_id = dbgmcu_idcode >> 16;
switch (device_id) {
case 0x440:
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 64;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;case 0x440:
case 0x444:
case 0x445:
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 32;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;case 0x445:
case 0x448:
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;case 0x448:
case 0x442:
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;case 0x442:
case 0x410:
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
/* ... */
switch (rev_id) {
case 0x1303:
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
max_flash_size_in_kb = 64;
stm32x_info->can_load_options = true;
break;case 0x1303:
case 0x1704:
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->can_load_options = true;
break;case 0x1704:
case 0x1906:
break;case 0x1906:
case 0x1909:
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
max_flash_size_in_kb = 64;
stm32x_info->can_load_options = true;
break;case 0x1909:
}switch (rev_id) { ... }
break;case 0x410:
case 0x412:
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 32;
break;case 0x412:
case 0x414:
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 512;
break;case 0x414:
case 0x418:
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
break;case 0x418:
case 0x430:
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 1024;
stm32x_info->has_dual_banks = true;
break;case 0x430:
case 0x420:
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
break;case 0x420:
case 0x428:
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 512;
break;case 0x428:
case 0x422:
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;case 0x422:
case 0x446:
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 512;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;case 0x446:
case 0x432:
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;case 0x432:
case 0x438:
case 0x439:
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 64;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;case 0x439:
default:
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;default
}switch (device_id) { ... }
retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
/* ... */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { ... }
if (stm32x_info->has_dual_banks) {
if (bank->base != 0x08080000) {
flash_size_in_kb = 512;
}if (bank->base != 0x08080000) { ... } else {
flash_size_in_kb -= 512;
stm32x_info->register_base = FLASH_REG_BASE_B1;
base_address = 0x08080000;
}else { ... }
}if (stm32x_info->has_dual_banks) { ... }
/* ... */
if (stm32x_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
}if (stm32x_info->user_bank_size) { ... }
LOG_INFO("flash size = %d KiB", flash_size_in_kb);
assert(flash_size_in_kb != 0xffff);
int num_pages = flash_size_in_kb * 1024 / page_size;
assert(num_pages > 0);
free(bank->sectors);
bank->sectors = NULL;
free(bank->prot_blocks);
bank->prot_blocks = NULL;
bank->base = base_address;
bank->size = (num_pages * page_size);
bank->num_sectors = num_pages;
bank->sectors = alloc_block_array(0, page_size, num_pages);
if (!bank->sectors)
return ERROR_FAIL;
int num_prot_blocks = num_pages / stm32x_info->ppage_size;
if (num_prot_blocks > 32)
num_prot_blocks = 32;
bank->num_prot_blocks = num_prot_blocks;
bank->prot_blocks = alloc_block_array(0, stm32x_info->ppage_size * page_size, num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
if (num_prot_blocks == 32)
bank->prot_blocks[31].size = (num_pages - (31 * stm32x_info->ppage_size)) * page_size;
stm32x_info->probed = true;
return ERROR_OK;
}{ ... }
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}{ ... }
#if 0
COMMAND_HANDLER(stm32x_handle_part_id_command)
{
return ERROR_OK;
}COMMAND_HANDLER (stm32x_handle_part_id_command) { ... }
#endif
static const char *get_stm32f0_revision(uint16_t rev_id)
{
const char *rev_str = NULL;
switch (rev_id) {
case 0x1000:
rev_str = "1.0";
break;case 0x1000:
case 0x2000:
rev_str = "2.0";
break;case 0x2000:
}switch (rev_id) { ... }
return rev_str;
}{ ... }
static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
{
uint32_t dbgmcu_idcode;
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint16_t rev_id = dbgmcu_idcode >> 16;
const char *device_str;
const char *rev_str = NULL;
switch (device_id) {
case 0x410:
device_str = "STM32F10x (Medium Density)";
switch (rev_id) {
case 0x0000:
rev_str = "A";
break;
case 0x0000:
case 0x1303:
device_str = "GD32F1x0";
break;
case 0x1303:
case 0x1704:
device_str = "GD32F3x0";
break;
case 0x1704:
case 0x1906:
device_str = "GD32VF103";
break;
case 0x1906:
case 0x1909:
device_str = "GD32E23x";
break;
case 0x1909:
case 0x2000:
rev_str = "B";
break;
case 0x2000:
case 0x2001:
rev_str = "Z";
break;
case 0x2001:
case 0x2003:
rev_str = "Y";
break;case 0x2003:
}switch (rev_id) { ... }
break;
case 0x410:
case 0x412:
device_str = "STM32F10x (Low Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;case 0x1000:
}switch (rev_id) { ... }
break;
case 0x412:
case 0x414:
device_str = "STM32F10x (High Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;
case 0x1001:
case 0x1003:
rev_str = "Y";
break;case 0x1003:
}switch (rev_id) { ... }
break;
case 0x414:
case 0x418:
device_str = "STM32F10x (Connectivity)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;case 0x1001:
}switch (rev_id) { ... }
break;
case 0x418:
case 0x420:
device_str = "STM32F100 (Low/Medium Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;case 0x1001:
}switch (rev_id) { ... }
break;
case 0x420:
case 0x422:
device_str = "STM32F302xB/C";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;
case 0x1001:
case 0x1003:
rev_str = "Y";
break;
case 0x1003:
case 0x2000:
rev_str = "B";
break;case 0x2000:
}switch (rev_id) { ... }
break;
case 0x422:
case 0x428:
device_str = "STM32F100 (High Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;case 0x1001:
}switch (rev_id) { ... }
break;
case 0x428:
case 0x430:
device_str = "STM32F10x (XL Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;case 0x1000:
}switch (rev_id) { ... }
break;
case 0x430:
case 0x432:
device_str = "STM32F37x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x2000:
rev_str = "B";
break;case 0x2000:
}switch (rev_id) { ... }
break;
case 0x432:
case 0x438:
device_str = "STM32F33x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;case 0x1000:
}switch (rev_id) { ... }
break;
case 0x438:
case 0x439:
device_str = "STM32F302x6/8";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1000:
case 0x1001:
rev_str = "Z";
break;case 0x1001:
}switch (rev_id) { ... }
break;
case 0x439:
case 0x444:
device_str = "STM32F03x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x444:
case 0x440:
device_str = "STM32F05x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x440:
case 0x445:
device_str = "STM32F04x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x445:
case 0x446:
device_str = "STM32F303xD/E";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;case 0x1000:
}switch (rev_id) { ... }
break;
case 0x446:
case 0x448:
device_str = "STM32F07x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x448:
case 0x442:
device_str = "STM32F09x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x442:
default:
command_print_sameline(cmd, "Cannot identify target as a STM32F0/1/3\n");
return ERROR_FAIL;default
}switch (device_id) { ... }
if (rev_str)
command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
else
command_print_sameline(cmd, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}if (stm32x_erase_options(bank) != ERROR_OK) { ... }
stm32x_info->option_bytes.rdp = 0;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to lock device");
return ERROR_OK;
}if (stm32x_write_options(bank) != ERROR_OK) { ... }
command_print(CMD, "stm32x locked");
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}if (stm32x_erase_options(bank) != ERROR_OK) { ... }
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to unlock device");
return ERROR_OK;
}if (stm32x_write_options(bank) != ERROR_OK) { ... }
command_print(CMD, "stm32x unlocked.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32x_handle_options_read_command)
{
uint32_t optionbyte, protection;
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
if (retval != ERROR_OK)
return retval;
uint16_t user_data = optionbyte >> stm32x_info->user_data_offset;
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
if (optionbyte & (1 << OPT_ERROR))
command_print(CMD, "option byte complement error");
command_print(CMD, "option byte register = 0x%" PRIx32 "", optionbyte);
command_print(CMD, "write protection register = 0x%" PRIx32 "", protection);
command_print(CMD, "read protection: %s",
(optionbyte & (1 << OPT_READOUT)) ? "on" : "off");
optionbyte >>= stm32x_info->option_offset;
command_print(CMD, "watchdog: %sware",
(optionbyte & (1 << OPT_RDWDGSW)) ? "soft" : "hard");
command_print(CMD, "stop mode: %sreset generated upon entry",
(optionbyte & (1 << OPT_RDRSTSTOP)) ? "no " : "");
command_print(CMD, "standby mode: %sreset generated upon entry",
(optionbyte & (1 << OPT_RDRSTSTDBY)) ? "no " : "");
if (stm32x_info->has_dual_banks)
command_print(CMD, "boot: bank %d", (optionbyte & (1 << OPT_BFB2)) ? 0 : 1);
command_print(CMD, "user data = 0x%02" PRIx16 "", user_data);
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32x_handle_options_write_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
uint8_t optionbyte;
uint16_t useropt;
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
optionbyte = stm32x_info->option_bytes.user;
useropt = stm32x_info->option_bytes.data;
CMD_ARGC--;
CMD_ARGV++;
while (CMD_ARGC) {
if (strcmp("SWWDG", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 0);
else if (strcmp("HWWDG", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 0);
else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 1);
else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 1);
else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 2);
else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 2);
else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) {
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], useropt);
CMD_ARGC--;
CMD_ARGV++;
}else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) { ... } else if (stm32x_info->has_dual_banks) {
if (strcmp("BOOT0", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 3);
else if (strcmp("BOOT1", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 3);
else
return ERROR_COMMAND_SYNTAX_ERROR;
}else if (stm32x_info->has_dual_banks) { ... } else
return ERROR_COMMAND_SYNTAX_ERROR;
CMD_ARGC--;
CMD_ARGV++;
}while (CMD_ARGC) { ... }
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}if (stm32x_erase_options(bank) != ERROR_OK) { ... }
stm32x_info->option_bytes.user = optionbyte;
stm32x_info->option_bytes.data = useropt;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to write options");
return ERROR_OK;
}if (stm32x_write_options(bank) != ERROR_OK) { ... }
command_print(CMD, "stm32x write options complete.\n"
"INFO: %spower cycle is required "
"for the new settings to take effect.",
stm32x_info->can_load_options
? "'stm32f1x options_load' command or " : "");
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(stm32x_handle_options_load_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (!stm32x_info->can_load_options) {
LOG_ERROR("Command not applicable to stm32f1x devices - power cycle is "
"required instead.");
return ERROR_FAIL;
}if (!stm32x_info->can_load_options) { ... }
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK) {
(void)target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
return retval;
}if (retval != ERROR_OK) { ... }
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBL_LAUNCH);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}{ ... }
static int stm32x_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_MER | FLASH_STRT);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
flash_lock:
{
int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
...}
return retval;
}{ ... }
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK)
command_print(CMD, "stm32x mass erase complete");
else
command_print(CMD, "stm32x mass erase failed");
return retval;
}{ ... }
static const struct command_registration stm32f1x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
...},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
...},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
...},
{
.name = "options_read",
.handler = stm32x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option bytes.",
...},
{
.name = "options_write",
.handler = stm32x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id ('SWWDG'|'HWWDG') "
"('RSTSTNDBY'|'NORSTSTNDBY') "
"('RSTSTOP'|'NORSTSTOP') ('USEROPT' user_data)",
.help = "Replace bits in device option bytes.",
...},
{
.name = "options_load",
.handler = stm32x_handle_options_load_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Force re-load of device option bytes.",
...},
COMMAND_REGISTRATION_DONE
...};
static const struct command_registration stm32f1x_command_handlers[] = {
{
.name = "stm32f1x",
.mode = COMMAND_ANY,
.help = "stm32f1x flash command group",
.usage = "",
.chain = stm32f1x_exec_command_handlers,
...},
COMMAND_REGISTRATION_DONE
...};
const struct flash_driver stm32f1x_flash = {
.name = "stm32f1x",
.commands = stm32f1x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
.free_driver_priv = default_flash_free_driver_priv,
...};