1
2
3
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
47
48
52
53
54
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
78
79
86
87
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
247
248
249
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
304
305
306
307
308
309
310
311
312
313
314
315
316
317
324
325
326
327
328
329
330
331
332
333
334
340
341
342
343
350
351
352
359
360
361
362
363
364
365
366
367
371
372
373
374
375
376
377
378
379
380
381
382
390
391
401
402
403
404
405
406
407
408
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
450
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/* ... */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <target/avrt.h>
#define AVR_JTAG_INS_LEN 4
#define AVR_JTAG_INS_EXTEST 0x00
#define AVR_JTAG_INS_IDCODE 0x01
#define AVR_JTAG_INS_SAMPLE_PRELOAD 0x02
#define AVR_JTAG_INS_BYPASS 0x0F
#define AVR_JTAG_INS_AVR_RESET 0x0C
#define AVR_JTAG_INS_PROG_ENABLE 0x04
#define AVR_JTAG_INS_PROG_COMMANDS 0x05
#define AVR_JTAG_INS_PROG_PAGELOAD 0x06
#define AVR_JTAG_INS_PROG_PAGEREAD 0x07
#define AVR_JTAG_REG_BYPASS_LEN 1
#define AVR_JTAG_REG_DEVICEID_LEN 32
#define AVR_JTAG_REG_RESET_LEN 1
#define AVR_JTAG_REG_JTAGID_LEN 32
#define AVR_JTAG_REG_PROGRAMMING_ENABLE_LEN 16
#define AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN 15
#define AVR_JTAG_REG_FLASH_DATA_BYTE_LEN 16
17 defines
struct avrf_type {
char name[15];
uint16_t chip_id;
int flash_page_size;
int flash_page_num;
int eeprom_page_size;
int eeprom_page_num;
...};
struct avrf_flash_bank {
int ppage_size;
bool probed;
...};
static const struct avrf_type avft_chips_info[] = {
/* ... */
{"atmega128", 0x9702, 256, 512, 8, 512},
{"atmega128rfa1", 0xa701, 128, 512, 8, 512},
{"atmega256rfr2", 0xa802, 256, 1024, 8, 1024},
{"at90can128", 0x9781, 256, 512, 8, 512},
{"at90usb128", 0x9782, 256, 512, 8, 512},
{"atmega164p", 0x940a, 128, 128, 4, 128},
{"atmega324p", 0x9508, 128, 256, 4, 256},
{"atmega324pa", 0x9511, 128, 256, 4, 256},
{"atmega644p", 0x960a, 256, 256, 8, 256},
{"atmega1284p", 0x9705, 256, 512, 8, 512},
{"atmega32u4", 0x9587, 128, 256, 4, 256},
...};
static int avr_jtag_reset(struct avr_common *avr, uint32_t reset)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_AVR_RESET);
avr_jtag_senddat(avr->jtag_info.tap, NULL, reset, AVR_JTAG_REG_RESET_LEN);
return ERROR_OK;
}{ ... }
static int avr_jtag_read_jtagid(struct avr_common *avr, uint32_t *id)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_IDCODE);
avr_jtag_senddat(avr->jtag_info.tap, id, 0, AVR_JTAG_REG_JTAGID_LEN);
return ERROR_OK;
}{ ... }
static int avr_jtagprg_enterprogmode(struct avr_common *avr)
{
avr_jtag_reset(avr, 1);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xA370, AVR_JTAG_REG_PROGRAMMING_ENABLE_LEN);
return ERROR_OK;
}{ ... }
static int avr_jtagprg_leaveprogmode(struct avr_common *avr)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2300, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3300, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0, AVR_JTAG_REG_PROGRAMMING_ENABLE_LEN);
avr_jtag_reset(avr, 0);
return ERROR_OK;
}{ ... }
static int avr_jtagprg_chiperase(struct avr_common *avr)
{
uint32_t poll_value;
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2380, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3180, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
do {
poll_value = 0;
avr_jtag_senddat(avr->jtag_info.tap,
&poll_value,
0x3380,
AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
if (mcu_execute_queue() != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
...} while (!(poll_value & 0x0200));
return ERROR_OK;
}{ ... }
static int avr_jtagprg_writeflashpage(struct avr_common *avr,
const bool ext_addressing,
const uint8_t *page_buf,
uint32_t buf_size,
uint32_t addr,
uint32_t page_size)
{
uint32_t poll_value;
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2310, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
if (ext_addressing)
avr_jtag_senddat(avr->jtag_info.tap,
NULL,
0x0b00 | ((addr >> 17) & 0xFF),
AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap,
NULL,
0x0700 | ((addr >> 9) & 0xFF),
AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap,
NULL,
0x0300 | ((addr >> 1) & 0xFF),
AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_PAGELOAD);
for (uint32_t i = 0; i < page_size; i++) {
if (i < buf_size)
avr_jtag_senddat(avr->jtag_info.tap, NULL, page_buf[i], 8);
else
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xFF, 8);
}for (uint32_t i = 0; i < page_size; i++) { ... }
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3500, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
do {
poll_value = 0;
avr_jtag_senddat(avr->jtag_info.tap,
&poll_value,
0x3700,
AVR_JTAG_REG_PROGRAMMING_COMMAND_LEN);
if (mcu_execute_queue() != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
...} while (!(poll_value & 0x0200));
return ERROR_OK;
}{ ... }
FLASH_BANK_COMMAND_HANDLER(avrf_flash_bank_command)
{
struct avrf_flash_bank *avrf_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
avrf_info = malloc(sizeof(struct avrf_flash_bank));
bank->driver_priv = avrf_info;
avrf_info->probed = false;
return ERROR_OK;
}{ ... }
static int avrf_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct avr_common *avr = target->arch_info;
int status;
LOG_DEBUG("%s", __func__);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
status = avr_jtagprg_enterprogmode(avr);
if (status != ERROR_OK)
return status;
status = avr_jtagprg_chiperase(avr);
if (status != ERROR_OK)
return status;
return avr_jtagprg_leaveprogmode(avr);
}{ ... }
static int avrf_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct avr_common *avr = target->arch_info;
uint32_t cur_size, cur_buffer_size, page_size;
bool ext_addressing;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
page_size = bank->sectors[0].size;
if ((offset % page_size) != 0) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required %" PRIu32 "-byte alignment",
offset,
page_size);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}if ((offset % page_size) != 0) { ... }
LOG_DEBUG("offset is 0x%08" PRIx32 "", offset);
LOG_DEBUG("count is %" PRIu32 "", count);
if (avr_jtagprg_enterprogmode(avr) != ERROR_OK)
return ERROR_FAIL;
if (bank->size > 0x20000)
ext_addressing = true;
else
ext_addressing = false;
cur_size = 0;
while (count > 0) {
if (count > page_size)
cur_buffer_size = page_size;
else
cur_buffer_size = count;
avr_jtagprg_writeflashpage(avr,
ext_addressing,
buffer + cur_size,
cur_buffer_size,
offset + cur_size,
page_size);
count -= cur_buffer_size;
cur_size += cur_buffer_size;
keep_alive();
}while (count > 0) { ... }
return avr_jtagprg_leaveprogmode(avr);
}{ ... }
#define EXTRACT_MFG(X) (((X) & 0xffe) >> 1)
#define EXTRACT_PART(X) (((X) & 0xffff000) >> 12)
#define EXTRACT_VER(X) (((X) & 0xf0000000) >> 28)
static int avrf_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct avrf_flash_bank *avrf_info = bank->driver_priv;
struct avr_common *avr = target->arch_info;
const struct avrf_type *avr_info = NULL;
uint32_t device_id;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
avrf_info->probed = false;
avr_jtag_read_jtagid(avr, &device_id);
if (mcu_execute_queue() != ERROR_OK)
return ERROR_FAIL;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
if (EXTRACT_MFG(device_id) != 0x1F)
LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected",
EXTRACT_MFG(device_id),
0x1F);
for (size_t i = 0; i < ARRAY_SIZE(avft_chips_info); i++) {
if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id)) {
avr_info = &avft_chips_info[i];
LOG_INFO("target device is %s", avr_info->name);
break;
}if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id)) { ... }
}for (size_t i = 0; i < ARRAY_SIZE(avft_chips_info); i++) { ... }
if (avr_info) {
free(bank->sectors);
bank->base = 0x00000000;
bank->size = (avr_info->flash_page_size * avr_info->flash_page_num);
bank->num_sectors = avr_info->flash_page_num;
bank->sectors = malloc(sizeof(struct flash_sector) * avr_info->flash_page_num);
for (int i = 0; i < avr_info->flash_page_num; i++) {
bank->sectors[i].offset = i * avr_info->flash_page_size;
bank->sectors[i].size = avr_info->flash_page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}for (int i = 0; i < avr_info->flash_page_num; i++) { ... }
avrf_info->probed = true;
return ERROR_OK;
}if (avr_info) { ... } else {
LOG_ERROR("0x%" PRIx32 " is not support for avr", EXTRACT_PART(device_id));
avrf_info->probed = true;
return ERROR_FAIL;
}else { ... }
}{ ... }
static int avrf_auto_probe(struct flash_bank *bank)
{
struct avrf_flash_bank *avrf_info = bank->driver_priv;
if (avrf_info->probed)
return ERROR_OK;
return avrf_probe(bank);
}{ ... }
static int avrf_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct target *target = bank->target;
struct avr_common *avr = target->arch_info;
const struct avrf_type *avr_info = NULL;
uint32_t device_id;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (bank->target->state != TARGET_HALTED) { ... }
avr_jtag_read_jtagid(avr, &device_id);
if (mcu_execute_queue() != ERROR_OK)
return ERROR_FAIL;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
if (EXTRACT_MFG(device_id) != 0x1F)
LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected",
EXTRACT_MFG(device_id),
0x1F);
for (size_t i = 0; i < ARRAY_SIZE(avft_chips_info); i++) {
if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id)) {
avr_info = &avft_chips_info[i];
LOG_INFO("target device is %s", avr_info->name);
break;
}if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id)) { ... }
}for (size_t i = 0; i < ARRAY_SIZE(avft_chips_info); i++) { ... }
if (avr_info) {
command_print_sameline(cmd, "%s - Rev: 0x%" PRIx32 "", avr_info->name,
EXTRACT_VER(device_id));
return ERROR_OK;
}if (avr_info) { ... } else {
command_print_sameline(cmd, "Cannot identify target as a avr\n");
return ERROR_FLASH_OPERATION_FAILED;
}else { ... }
}{ ... }
static int avrf_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
struct avr_common *avr = target->arch_info;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}if (target->state != TARGET_HALTED) { ... }
if ((avr_jtagprg_enterprogmode(avr) != ERROR_OK)
|| (avr_jtagprg_chiperase(avr) != ERROR_OK)
|| (avr_jtagprg_leaveprogmode(avr) != ERROR_OK))
return ERROR_FAIL;
return ERROR_OK;
}{ ... }
COMMAND_HANDLER(avrf_handle_mass_erase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (avrf_mass_erase(bank) == ERROR_OK)
command_print(CMD, "avr mass erase complete");
else
command_print(CMD, "avr mass erase failed");
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}{ ... }
static const struct command_registration avrf_exec_command_handlers[] = {
{
.name = "mass_erase",
.usage = "<bank>",
.handler = avrf_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.help = "erase entire device",
...},
COMMAND_REGISTRATION_DONE
...};
static const struct command_registration avrf_command_handlers[] = {
{
.name = "avrf",
.mode = COMMAND_ANY,
.help = "AVR flash command group",
.usage = "",
.chain = avrf_exec_command_handlers,
...},
COMMAND_REGISTRATION_DONE
...};
const struct flash_driver avr_flash = {
.name = "avr",
.commands = avrf_command_handlers,
.flash_bank_command = avrf_flash_bank_command,
.erase = avrf_erase,
.write = avrf_write,
.read = default_flash_read,
.probe = avrf_probe,
.auto_probe = avrf_auto_probe,
.erase_check = default_flash_blank_check,
.info = avrf_info,
.free_driver_priv = default_flash_free_driver_priv,
...};