Select one of the symbols to view example projects that use it.
 
Outline
#include "config.h"
#include "core.h"
nand_ecc_precalc_table
nand_calculate_ecc(struct nand_device *, const uint8_t *, uint8_t *)
countbits(uint32_t)
nand_correct_data(struct nand_device *, u_char *, u_char *, u_char *)
Files
loading...
SourceVuDevelopment ToolsOpenOCDsrc/flash/nand/ecc.c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
// SPDX-License-Identifier: GPL-2.0-or-later WITH eCos-exception-2.0 /* * This file contains an ECC algorithm from Toshiba that allows for detection * and correction of 1-bit errors in a 256 byte block of data. * * [ Extracted from the initial code found in some early Linux versions. * The current Linux code is bigger while being faster, but this is of * no real benefit when the bottleneck largely remains the JTAG link. ] * * Copyright (C) 2000-2004 Steven J. Hill (sjhill at realitydiluted.com) * Toshiba America Electronics Components, Inc. * * Copyright (C) 2006 Thomas Gleixner <tglx at linutronix.de> *//* ... */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "core.h" /* * Pre-calculated 256-way 1 byte column parity *//* ... */ static const uint8_t nand_ecc_precalc_table[] = { 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 ...}; /* * nand_calculate_ecc - Calculate 3-byte ECC for 256-byte block *//* ... */ int nand_calculate_ecc(struct nand_device *nand, const uint8_t *dat, uint8_t *ecc_code) { uint8_t idx, reg1, reg2, reg3, tmp1, tmp2; int i; /* Initialize variables */ reg1 = reg2 = reg3 = 0; /* Build up column parity */ for (i = 0; i < 256; i++) { /* Get CP0 - CP5 from table */ idx = nand_ecc_precalc_table[*dat++]; reg1 ^= (idx & 0x3f); /* All bit XOR = 1 ? */ if (idx & 0x40) { reg3 ^= (uint8_t) i; reg2 ^= ~((uint8_t) i); }if (idx & 0x40) { ... } }for (i = 0; i < 256; i++) { ... } /* Create non-inverted ECC code from line parity */ tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */ tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */ tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */ tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */ tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */ tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */ tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */ tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */ tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */ tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */ tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */ tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */ tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */ tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */ tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */ tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */ /* Calculate final ECC code */ #ifdef NAND_ECC_SMC ecc_code[0] = ~tmp2; ecc_code[1] = ~tmp1;/* ... */ #else ecc_code[0] = ~tmp1; ecc_code[1] = ~tmp2;/* ... */ #endif ecc_code[2] = ((~reg1) << 2) | 0x03; return 0; }{ ... } static inline int countbits(uint32_t b) { int res = 0; for (; b; b >>= 1) res += b & 0x01; return res; }{ ... } /** * nand_correct_data - Detect and correct a 1 bit error for 256 byte block *//* ... */ int nand_correct_data(struct nand_device *nand, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { uint8_t s0, s1, s2; #ifdef NAND_ECC_SMC s0 = calc_ecc[0] ^ read_ecc[0]; s1 = calc_ecc[1] ^ read_ecc[1]; s2 = calc_ecc[2] ^ read_ecc[2];/* ... */ #else s1 = calc_ecc[0] ^ read_ecc[0]; s0 = calc_ecc[1] ^ read_ecc[1]; s2 = calc_ecc[2] ^ read_ecc[2];/* ... */ #endif if ((s0 | s1 | s2) == 0) return 0; /* Check for a single bit error */ if (((s0 ^ (s0 >> 1)) & 0x55) == 0x55 && ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 && ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) { uint32_t byteoffs, bitnum; byteoffs = (s1 << 0) & 0x80; byteoffs |= (s1 << 1) & 0x40; byteoffs |= (s1 << 2) & 0x20; byteoffs |= (s1 << 3) & 0x10; byteoffs |= (s0 >> 4) & 0x08; byteoffs |= (s0 >> 3) & 0x04; byteoffs |= (s0 >> 2) & 0x02; byteoffs |= (s0 >> 1) & 0x01; bitnum = (s2 >> 5) & 0x04; bitnum |= (s2 >> 4) & 0x02; bitnum |= (s2 >> 3) & 0x01; dat[byteoffs] ^= (1 << bitnum); return 1; }if (((s0 ^ (s0 >> 1)) & 0x55) == 0x55 && ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 && ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) { ... } if (countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 << 16)) == 1) return 1; return -1; }{ ... }
Details
Show:
from
Types: Columns:
Click anywhere in the source to view detailed information here...